Suppr超能文献

酿酒酵母的代谢工程

Metabolic engineering of Saccharomyces cerevisiae.

作者信息

Ostergaard S, Olsson L, Nielsen J

机构信息

Center for Process Biotechnology, Department of Biotechnology, Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

Microbiol Mol Biol Rev. 2000 Mar;64(1):34-50. doi: 10.1128/MMBR.64.1.34-50.2000.

Abstract

Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production.

摘要

随着时间的推移,人们积累了关于酿酒酵母的全面知识,如今酿酒酵母既是一种广泛使用的生物技术生产生物体,也是一个真核生物模型系统。除了完整的酵母基因组序列可用外,其高转化效率也促进了对这种微生物的基因操作,并且人们不断采用新方法对该生物体进行代谢工程改造以满足特定需求。本文讨论了代谢工程的策略和概念,并回顾了基于涉及酿酒酵母的选定研究的几个例子。使用这种生物体进行的许多不同的代谢工程研究说明了这个多学科领域的所有类别:底物范围的扩展、生产力和产量的提高、副产物形成的消除、工艺性能的改善、细胞特性的改善以及产品范围的扩展,包括异源蛋白的生产。

相似文献

1
Metabolic engineering of Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2000 Mar;64(1):34-50. doi: 10.1128/MMBR.64.1.34-50.2000.
2
Genetic improvement of Saccharomyces cerevisiae for xylose fermentation.
Biotechnol Adv. 2007 Sep-Oct;25(5):425-41. doi: 10.1016/j.biotechadv.2007.04.001. Epub 2007 Apr 24.
5
Progress in metabolic engineering of Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412. doi: 10.1128/MMBR.00025-07.
7
Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.
Bioeng Bugs. 2010 May-Jun;1(3):164-71. doi: 10.4161/bbug.1.3.10619. Epub 2009 Nov 13.
8
Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7.
9
Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives.
Biotechnol J. 2012 Jan;7(1):34-46. doi: 10.1002/biot.201100053. Epub 2011 Dec 7.
10
D-Xylose Sensing in : Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
Int J Mol Sci. 2021 Nov 17;22(22):12410. doi: 10.3390/ijms222212410.

引用本文的文献

2
Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.
Appl Microbiol Biotechnol. 2024 Dec 19;108(1):539. doi: 10.1007/s00253-024-13382-1.
4
Machine learning enables identification of an alternative yeast galactose utilization pathway.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2315314121. doi: 10.1073/pnas.2315314121. Epub 2024 Apr 26.
5
Improvement of cell growth in green algae Chlamydomonas reinhardtii through co-cultivation with yeast Saccharomyces cerevisiae.
Biotechnol Lett. 2024 Jun;46(3):431-441. doi: 10.1007/s10529-024-03483-2. Epub 2024 Apr 5.
6
UV mutagenesis improves growth potential of green algae in a green algae-yeast co-culture system.
Arch Microbiol. 2024 Jan 12;206(2):61. doi: 10.1007/s00203-023-03796-2.
7
A New Role for Yeast Cells in Health and Nutrition: Antioxidant Power Assessment.
Int J Mol Sci. 2023 Jul 22;24(14):11800. doi: 10.3390/ijms241411800.
8
Two-way communication between cell cycle and metabolism in budding yeast: what do we know?
Front Microbiol. 2023 Jun 15;14:1187304. doi: 10.3389/fmicb.2023.1187304. eCollection 2023.
9
Revalorization of Melon By-Product to Obtain a Novel Sparkling Fruity-Based Wine.
Foods. 2023 Jan 20;12(3):491. doi: 10.3390/foods12030491.

本文引用的文献

1
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model.
Biotechnol Bioeng. 1997 Aug 20;55(4):592-608. doi: 10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C.
2
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations.
Biotechnol Bioeng. 1997 Jul 20;55(2):305-16. doi: 10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M.
3
Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing.
Biotechnol Bioeng. 1996 Jan 20;49(2):111-29. doi: 10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T.
4
Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations.
Biotechnol Bioeng. 1995 Apr 20;46(2):117-31. doi: 10.1002/bit.260460205.
5
Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli.
Biotechnol Bioeng. 1991 Jul;38(3):296-303. doi: 10.1002/bit.260380311.
6
Fermentation of lactose to ethanol with recombinant yeast in an immobilized yeast membrane bioreactor.
Biotechnol Bioeng. 1991 Mar 15;37(6):587-90. doi: 10.1002/bit.260370614.
8
Fermentation to ethanol of pentose-containing spent sulphite liquor.
Biotechnol Bioeng. 1987 Jun;29(9):1144-50. doi: 10.1002/bit.260290915.
9
Fuel ethanol from cellulosic biomass.
Science. 1991 Mar 15;251(4999):1318-23. doi: 10.1126/science.251.4999.1318.
10
Expression, Glycosylation, and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae.
Science. 1985 Apr 5;228(4695):21-6. doi: 10.1126/science.228.4695.21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验