Suppr超能文献

基于动态模糊Q学习的模糊推理系统在线调优

Online tuning of fuzzy inference systems using dynamic fuzzy Q-learning.

作者信息

Er Meng Joo, Deng Chang

机构信息

Intelligent Systems Center, Singapore 637533.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2004 Jun;34(3):1478-89. doi: 10.1109/tsmcb.2004.825938.

Abstract

This paper presents a dynamic fuzzy Q-learning (DFQL) method that is capable of tuning fuzzy inference systems (FIS) online. A novel online self-organizing learning algorithm is developed so that structure and parameters identification are accomplished automatically and simultaneously based only on Q-learning. Self-organizing fuzzy inference is introduced to calculate actions and Q-functions so as to enable us to deal with continuous-valued states and actions. Fuzzy rules provide a natural mean of incorporating the bias components for rapid reinforcement learning. Experimental results and comparative studies with the fuzzy Q-learning (FQL) and continuous-action Q-learning in the wall-following task of mobile robots demonstrate that the proposed DFQL method is superior.

摘要

本文提出了一种动态模糊Q学习(DFQL)方法,该方法能够在线调整模糊推理系统(FIS)。开发了一种新颖的在线自组织学习算法,使得仅基于Q学习就能自动且同时完成结构和参数识别。引入自组织模糊推理来计算动作和Q函数,以便我们能够处理连续值状态和动作。模糊规则提供了一种纳入偏差分量以实现快速强化学习的自然方式。在移动机器人的壁面跟踪任务中,与模糊Q学习(FQL)和连续动作Q学习的实验结果及对比研究表明,所提出的DFQL方法更具优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验