Lin Cheng-Jian, Chin Cheng-Chung
IEEE Trans Syst Man Cybern B Cybern. 2004 Oct;34(5):2144-54. doi: 10.1109/tsmcb.2004.833330.
This paper presents a wavelet-based recurrent fuzzy neural network (WRFNN) for prediction and identification of nonlinear dynamic systems. The proposed WRFNN model combines the traditional Takagi-Sugeno-Kang (TSK) fuzzy model and the wavelet neural networks (WNN). This paper adopts the nonorthogonal and compactly supported functions as wavelet neural network bases. Temporal relations embedded in the network are caused by adding some feedback connections representing the memory units into the second layer of the feedforward wavelet-based fuzzy neural networks (WFNN). An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the degree measure to obtain the number of fuzzy rules and wavelet functions. Meanwhile, the parameter learning is based on the gradient descent method for adjusting the shape of the membership function and the connection weights of WNN. Finally, computer simulations have demonstrated that the proposed WRFNN model requires fewer adjustable parameters and obtains a smaller rms error than other methods.
本文提出了一种基于小波的递归模糊神经网络(WRFNN),用于非线性动态系统的预测和识别。所提出的WRFNN模型结合了传统的高木-关野-康(TSK)模糊模型和小波神经网络(WNN)。本文采用非正交且具有紧支集的函数作为小波神经网络基。通过在基于小波的前馈模糊神经网络(WFNN)的第二层中添加一些表示记忆单元的反馈连接,嵌入网络中的时间关系得以产生。还提出了一种由结构学习和参数学习组成的在线学习算法。结构学习依赖于度度量来获得模糊规则和小波函数的数量。同时,参数学习基于梯度下降法来调整隶属函数的形状和WNN的连接权重。最后,计算机仿真表明,所提出的WRFNN模型所需的可调参数较少,并且比其他方法具有更小的均方根误差。