Smidt Hauke, de Vos Willem M
Laboratory of Microbiology, Wageningen University, 6703CT Wageningen, The Netherlands.
Annu Rev Microbiol. 2004;58:43-73. doi: 10.1146/annurev.micro.58.030603.123600.
The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the current knowledge on metabolic and phylogenetic diversity of anaerobic microorganisms that are capable of dehalogenating--or completely mineralizing--halogenated hydrocarbons by fermentative, oxidative, or reductive pathways. In particular, research of the past decade has focused on halorespiring anaerobes, which couple the dehalogenation by dedicated enzyme systems to the generation of energy by electron transport-driven phosphorylation. Significant advances in the biochemistry and molecular genetics of degradation pathways have revealed mechanistic and structural similarities between dehalogenating enzymes from phylogenetically distinct anaerobes. The availability of two almost complete genome sequences of halorespiring isolates recently enabled comparative and functional genomics approaches, setting the stage for the further exploitation of halorespiring and other anaerobic dehalogenating microbes as dedicated degraders in biological remediation processes.
卤代烃向环境中的自然产生和人为释放,可能是微生物对不同种类的外源卤代有机化合物进行脱卤的能力意外进化的驱动力。本文就通过发酵、氧化或还原途径对卤代烃进行脱卤(或完全矿化)的厌氧微生物的代谢和系统发育多样性的现有知识进行了更新。特别是,过去十年的研究集中在卤呼吸厌氧菌上,这些菌通过专用酶系统将脱卤与电子传递驱动的磷酸化产生能量相耦合。降解途径的生物化学和分子遗传学方面的重大进展,揭示了来自系统发育上不同的厌氧菌的脱卤酶之间的机制和结构相似性。最近,两个几乎完整的卤呼吸分离株基因组序列的获得,使得比较和功能基因组学方法成为可能,为在生物修复过程中进一步开发卤呼吸菌和其他厌氧脱卤微生物作为专用降解菌奠定了基础。