Suppr超能文献

基因组解析转录组学揭示了来自奥胡斯湾沉积物中的新型PCE脱卤细菌。

Genome-resolved transcriptomics reveals novel PCE-dehalogenating bacteria from Aarhus Bay sediments.

作者信息

Zhang Chen, Bosma Tom N P, Atashgahi Siavash, Smidt Hauke

机构信息

Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands.

出版信息

mSystems. 2025 May 20;10(5):e0150324. doi: 10.1128/msystems.01503-24. Epub 2025 Apr 16.

Abstract

Organohalide-respiring bacteria (OHRB) are keystone microbes in bioremediation of sites contaminated with organohalides and in natural halogen cycling. Known OHRB belong to distinct genera within the phyla , , and , whereas information about novel OHRB mediating natural halogen cycling remains scarce. In this study, we applied a genome-resolved transcriptomic approach to characterize the identity and activity of OHRB from tetrachloroethene respiring cultures previously enriched from sediments of Aarhus Bay. Combining short- and long-read sequencing approaches, we assembled 37 medium-quality bins with over 75% completeness and less than 5% contamination. Sixteen bins harbored RDase genes and were affiliated taxonomically to the class of and phyla of , , and , which have not been reported to catalyze reductive dehalogenation. Among the 16 bins, bin.26, phylogenetically close to the genus (phylum ), contained an unprecedented 97 reductive dehalogenase (RDase) genes. Of these, 84 RDase genes of bin.26 were transcribed during tetrachloroethene dechlorination in addition to RDase genes from the members of (bin.5 and bin.32) and (bin.18 and bin.24). Moreover, metatranscriptome analysis suggested that the RDase genes were likely under the regulation of transcriptional regulators not previously associated with organohalide respiration, such as HrcA and SigW, which are known to respond to abiotic environmental stresses, such as temperature changes. Combined application of genomic methods enabled us to pinpoint novel OHRB from pristine environments not previously known to mediate reductive dechlorination and to add to the current knowledge of the diversity, activity, and regulation of RDase genes.IMPORTANCEPristine marine environment is the major reservoir for naturally produced organohalides, in which reductive dehalogenation underneath plays an important role in the overall cycling of these compounds. Here, we obtain some novel OHRB genomes from Aarhus Bay marine sediments, which are phylogenetically distant to the well-documented OHRB and widely distributed across the bacterial phyla, such as , , and . Furthermore, transcriptional profiles unravel that these RDase genes are induced differently, and their activity is controlled by diverse regulatory systems. Accordingly, elucidating the reductive dehalogenation of pristine marine environments substantially advances our understanding of the diversity, phylogeny, and regulatory variety of dehalogenating bacteria contributing to the global halogen cycle.

摘要

有机卤呼吸细菌(OHRB)是受有机卤污染场地生物修复和天然卤素循环中的关键微生物。已知的OHRB属于、和门内不同的属,而关于介导天然卤素循环的新型OHRB的信息仍然很少。在本研究中,我们应用基因组解析转录组学方法来表征先前从奥胡斯湾沉积物中富集的四氯乙烯呼吸培养物中OHRB的身份和活性。结合短读长和长读长测序方法,我们组装了37个中等质量的基因组箱,完整性超过75%,污染率低于5%。16个基因组箱含有RDase基因,在分类学上隶属于类以及、和门,这些门类尚未被报道可催化还原性脱卤反应。在这16个基因组箱中,与属(门)在系统发育上接近的基因组箱.26含有前所未有的97个还原性脱卤酶(RDase)基因。其中,除了来自(基因组箱.5和基因组箱.32)和(基因组箱.18和基因组箱.24)成员的RDase基因外,基因组箱.26的84个RDase基因在四氯乙烯脱氯过程中被转录。此外,宏转录组分析表明,RDase基因可能受先前未与有机卤呼吸相关的转录调节因子调控,如已知对温度变化等非生物环境胁迫有反应的HrcA和SigW。基因组方法的联合应用使我们能够从以前未知介导还原性脱氯的原始环境中确定新型OHRB,并增加了我们对RDase基因多样性、活性和调控的现有认识。

重要性

原始海洋环境是天然产生的有机卤的主要储存库,其中其下的还原性脱卤在这些化合物的整体循环中起重要作用。在这里,我们从奥胡斯湾海洋沉积物中获得了一些新型OHRB基因组,它们在系统发育上与记录充分的OHRB相距甚远,并且广泛分布于细菌门,如、和。此外,转录谱揭示这些RDase基因的诱导方式不同,其活性受多种调控系统控制。因此,阐明原始海洋环境中的还原性脱卤极大地推进了我们对有助于全球卤素循环的脱卤细菌的多样性、系统发育和调控多样性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b570/12090745/5228593e13f6/msystems.01503-24.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验