Yonath Ada, Bashan Anat
Department of Structural Biology, The Weizmann Institute, 76100 Rehovot, Israel.
Annu Rev Microbiol. 2004;58:233-51. doi: 10.1146/annurev.micro.58.030603.123822.
High-resolution structures of ribosomal complexes revealed that minute amounts of clinically relevant antibiotics hamper protein biosynthesis by limiting ribosomal mobility or perturbing its elaborate architecture, designed for navigating and controlling peptide bond formation and continuous amino acid polymerization. To accomplish this, the ribosome contributes positional rather than chemical catalysis, provides remote interactions governing accurate substrate alignment within the flexible peptidyl-transferase center (PTC) pocket, and ensures nascent-protein chirality through spatial limitations. Peptide bond formation is concurrent with aminoacylated-tRNA 3' end translocation and is performed by a rotatory motion around the axis of a sizable ribosomal symmetry-related region, which is located around the PTC in all known crystal structures. Guided by ribosomal-RNA scaffold along an exact pattern, the rotatory motion results in stereochemistry that is optimal for peptide bond formation and for nascent protein entrance into the exit tunnel, the main target of antibiotics targeting ribosomes. By connecting the PTC, the decoding center, and the tRNA entrance and exit regions, the symmetry-related region can transfer intraribosomal signals, guaranteeing smooth processivity of amino acid polymerization.
核糖体复合物的高分辨率结构显示,微量的临床相关抗生素通过限制核糖体的移动性或扰乱其精心设计的结构来阻碍蛋白质生物合成,核糖体的结构旨在引导和控制肽键形成以及连续的氨基酸聚合。为实现这一点,核糖体提供的是位置催化而非化学催化,通过远程相互作用在灵活的肽基转移酶中心(PTC)口袋内精确排列底物,并通过空间限制确保新生蛋白质的手性。肽键形成与氨酰化tRNA 3'端易位同时发生,由围绕一个相当大的核糖体对称相关区域的轴的旋转运动执行,在所有已知晶体结构中该区域位于PTC周围。在核糖体RNA支架沿精确模式的引导下,旋转运动产生的立体化学对于肽键形成以及新生蛋白质进入出口通道(抗生素靶向核糖体的主要靶点)而言是最佳的。通过连接PTC、解码中心以及tRNA进出区域,对称相关区域可以传递核糖体内部信号,确保氨基酸聚合的顺利进行。