Suppr超能文献

针对协变量调整广义ROC曲线。

Adjusting the generalized ROC curve for covariates.

作者信息

Schisterman Enrique F, Faraggi David, Reiser Benjamin

机构信息

Division of Epidemiology, Statistics and Prevention, NICHD, NIH, USA.

出版信息

Stat Med. 2004 Nov 15;23(21):3319-31. doi: 10.1002/sim.1908.

Abstract

Receiver operating characteristic (ROC) curves and in particular the area under the curve (AUC), are widely used to examine the effectiveness of diagnostic markers. Diagnostic markers and their corresponding ROC curves can be strongly influenced by covariate variables. When several diagnostic markers are available, they can be combined by a best linear combination such that the area under the ROC curve of the combination is maximized among all possible linear combinations. In this paper we discuss covariate effects on this linear combination assuming that the multiple markers, possibly transformed, follow a multivariate normal distribution. The ROC curve of this linear combination when markers are adjusted for covariates is estimated and approximate confidence intervals for the corresponding AUC are derived. An example of two biomarkers of coronary heart disease for which covariate information on age and gender is available is used to illustrate this methodology.

摘要

受试者工作特征(ROC)曲线,尤其是曲线下面积(AUC),被广泛用于检验诊断标志物的有效性。诊断标志物及其相应的ROC曲线可能会受到协变量的强烈影响。当有多个诊断标志物可用时,可以通过最佳线性组合将它们组合起来,使得该组合的ROC曲线下面积在所有可能的线性组合中最大。在本文中,我们讨论协变量对这种线性组合的影响,假设多个标志物(可能经过变换)服从多元正态分布。当对标志物进行协变量调整时,估计该线性组合的ROC曲线,并推导相应AUC的近似置信区间。以两个可获取年龄和性别协变量信息的冠心病生物标志物为例来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验