Suppr超能文献

基于Box-Cox变换的接收者操作特征曲线的统计推断

Statistical Inference for Box-Cox based Receiver Operating Characteristic Curves.

作者信息

Bantis Leonidas E, Brewer Benjamin, Nakas Christos T, Reiser Benjamin

机构信息

Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA.

Laboratory of Biometry, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.

出版信息

Stat Med. 2024 Dec 30;43(30):6099-6122. doi: 10.1002/sim.10252. Epub 2024 Nov 17.

Abstract

Receiver operating characteristic (ROC) curve analysis is widely used in evaluating the effectiveness of a diagnostic test/biomarker or classifier score. A parametric approach for statistical inference on ROC curves based on a Box-Cox transformation to normality has frequently been discussed in the literature. Many investigators have highlighted the difficulty of taking into account the variability of the estimated transformation parameter when carrying out such an analysis. This variability is often ignored and inferences are made by considering the estimated transformation parameter as fixed and known. In this paper, we will review the literature discussing the use of the Box-Cox transformation for ROC curves and the methodology for accounting for the estimation of the Box-Cox transformation parameter in the context of ROC analysis, and detail its application to a number of problems. We present a general framework for inference on any functional of interest, including common measures such as the AUC, the Youden index, and the sensitivity at a given specificity (and vice versa). We further developed a new R package (named 'rocbc') that carries out all discussed approaches and is available in CRAN.

摘要

受试者工作特征(ROC)曲线分析在评估诊断测试/生物标志物或分类器评分的有效性方面被广泛应用。基于Box-Cox正态变换的ROC曲线统计推断的参数方法在文献中经常被讨论。许多研究者强调了在进行此类分析时考虑估计变换参数变异性的困难。这种变异性常常被忽略,并且在进行推断时将估计的变换参数视为固定且已知的。在本文中,我们将回顾讨论Box-Cox变换用于ROC曲线的文献以及在ROC分析背景下考虑Box-Cox变换参数估计的方法,并详细阐述其在一些问题中的应用。我们提出了一个用于对任何感兴趣的函数进行推断的通用框架,包括诸如曲线下面积(AUC)、尤登指数以及给定特异性下的灵敏度(反之亦然)等常见指标。我们进一步开发了一个新的R包(名为“rocbc”),它实现了所有讨论的方法并且可在CRAN上获取。

相似文献

4
Partial Youden index and its inferences.部分尤登指数及其推论。
J Biopharm Stat. 2019;29(2):385-399. doi: 10.1080/10543406.2018.1535502. Epub 2018 Oct 25.
8
On estimating the area under the ROC curve in ranked set sampling.在有序样本中估计 ROC 曲线下的面积。
Stat Methods Med Res. 2022 Aug;31(8):1500-1514. doi: 10.1177/09622802221097211. Epub 2022 May 12.
9
Smooth ROC curve estimation via Bernstein polynomials.基于 Bernstein 多项式的平滑 ROC 曲线估计。
PLoS One. 2021 May 25;16(5):e0251959. doi: 10.1371/journal.pone.0251959. eCollection 2021.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验