Kokkinakis Demetrius M, Liu Xiaoyan, Chada Sunil, Ahmed Mansoor M, Shareef Mohammed M, Singha Ujjal K, Yang Sutin, Luo Jianhua
The University of Pittsburgh Cancer Institute and the Department of Pathology, Hillman Cancer Institute, Pittsburgh, Pennsylvania, USA.
Cancer Res. 2004 Oct 15;64(20):7513-25. doi: 10.1158/0008-5472.CAN-04-0592.
Methionine deprivation imposes a metabolic stress, termed methionine stress, that inhibits mitosis and induces cell cycle arrest and apoptosis. The methionine-dependent central nervous system tumor cell lines DAOY (medulloblastoma), SWB61 (anaplastic oligodendroglioma), SWB40 (anaplastic astrocytoma), and SWB39 (glioblastoma multiforme) were compared with methionine-stress resistant SWB77 (glioblastoma multiforme). The cDNA-oligoarray analysis and reverse transcription-PCR verification indicated common changes in gene expression in methionine-dependent cell lines to include up-regulation/induction of cyclin D1, mitotic arrest deficient (MAD)1, p21, growth arrest and DNA-damage-inducible (GADD)45 alpha, GADD45 gamma, GADD34, breast cancer (BRCA)1, 14-3-3sigma, B-cell CLL/lymphoma (BCL)1, transforming growth factor (TGF)-beta, TGF-beta-induced early response (TIEG), SMAD5, SMAD7, SMAD2, insulin-like growth factor binding protein (IGFBP7), IGF-R2, vascular endothelial growth factor (VEGF), TNF-related apoptosis-inducing ligand (TRAIL), TNF-alpha converting enzyme (TACE), TRAIL receptor (TRAIL-R)2, TNFR-related death receptor (DR)6, TRAF interacting protein (I-TRAF), IL-6, MDA7, IL-1B convertase (ICE)-gamma, delta and epsilon, IRF1, IRF5, IRF7, interferon (IFN)-gamma and receptor components, ISG15, p65-NF-kappaB, JUN-B, positive cofactor (PC)4, C/ERB-beta, inositol triphosphate receptor I, and methionine adenosyltransferase II. On the other hand, cyclins A1, A2, B1 and B2, cell division cycle (CDC)2 and its kinase, CDC25 A and B, budding uninhibited by benzimidazoles (BUB)1 and 3, MAD2, CDC28 protein kinase (CKS)1 and 2, neuroepithelial cell transforming gene (NET)1, activator of S-phase kinase (ASK), CDC14B phosphatase, BCL2, TGF-beta activated kinase (TAK)1, TAB1, c-FOS, DNA topoisomerase II, DNA polymerase alpha, dihydrofolate reductase, thymidine kinase, stathmin, and MAP4 were down-regulated. In the methionine stress-resistant SWB77, only 20% of the above genes were affected, and then only to a lesser extent. In addition, some of the changes observed in SWB77 were opposite to those seen in methionine-dependent tumors, including expression of p21, TRAIL-R2, and TIEG. Despite similarities, differences between methionine-dependent tumors were substantial, especially in regard to regulation of cytokine expression. Western blot analysis confirmed that methionine stress caused the following: (a) a marked increase of GADD45alpha and gamma in the wt-p53 cell lines SWB61 and 40; (b) an increase in GADD34 and p21 protein in all of the methionine-dependent lines; and (c) the induction of MDA7 and phospho-p38 in DAOY and SWB39, consistent with marked transcriptional activation of the former under methionine stress. It was additionally shown that methionine stress down-regulated the highly active phosphatidylinositol 3'-kinase pathway by reducing AKT phosphorylation, especially in DAOY and SWB77, and also reduced the levels of retinoblastoma (Rb) and pRb (P-ser780, P-ser795, and P-ser807/811), resulting in a shift in favor of unphosphorylated species in all of the methionine-dependent lines. Immunohistochemical analysis showed marked inhibition of nuclear translocation of nuclear factor kappaB under methionine stress in methionine-dependent lines. In this study we show for the first time that methionine stress mobilizes several defined cell cycle checkpoints and proapoptotic pathways while coordinately inhibiting prosurvival mechanisms in central nervous system tumors. It is clear that methionine stress-induced cytotoxicity is not restricted by the p53 mutational status.
蛋氨酸剥夺会引发一种代谢应激,称为蛋氨酸应激,它会抑制有丝分裂,诱导细胞周期停滞和凋亡。将依赖蛋氨酸的中枢神经系统肿瘤细胞系DAOY(髓母细胞瘤)、SWB61(间变性少突胶质细胞瘤)、SWB40(间变性星形细胞瘤)和SWB39(多形性胶质母细胞瘤)与抗蛋氨酸应激的SWB77(多形性胶质母细胞瘤)进行比较。cDNA寡核苷酸阵列分析和逆转录 - PCR验证表明,依赖蛋氨酸的细胞系中基因表达存在共同变化,包括细胞周期蛋白D1、有丝分裂停滞缺陷蛋白(MAD)1、p21、生长停滞和DNA损伤诱导蛋白(GADD)45α、GADD45γ、GADD34、乳腺癌(BRCA)基因1、14 - 3 - 3σ、B细胞淋巴瘤/白血病(BCL)1、转化生长因子(TGF) - β、TGF - β诱导早期反应蛋白(TIEG)、SMAD5、SMAD7、SMAD2、胰岛素样生长因子结合蛋白(IGFBP7)、IGF - R2、血管内皮生长因子(VEGF)、肿瘤坏死因子相关凋亡诱导配体(TRAIL)、肿瘤坏死因子α转换酶(TACE)、TRAIL受体(TRAIL - R)2、肿瘤坏死因子受体相关死亡受体(DR)6、TRAF相互作用蛋白(I - TRAF)、白细胞介素 - 6、黑色素瘤分化相关基因7(MDA7)、白细胞介素 - 1β转换酶(ICE) - γ、δ和ε、干扰素调节因子1(IRF1)、IRF5、IRF7、干扰素(IFN) - γ及其受体成分、干扰素刺激基因15(ISG15)、p65 - 核因子κB、JUN - B、正性辅因子(PC)4、C/EB - β、肌醇三磷酸受体I和蛋氨酸腺苷转移酶II的上调/诱导。另一方面,细胞周期蛋白A1、A2、B1和B2、细胞分裂周期蛋白(CDC)2及其激酶、细胞周期蛋白磷酸酶25 A和B、苯并咪唑不抑制的芽殖蛋白(BUB)1和3、MAD2、CDC28蛋白激酶(CKS)1和2、神经上皮细胞转化基因(NET)1、S期激酶激活剂(ASK)、CDC14B磷酸酶、BCL2、TGF - β激活激酶(TAK)1、TAB1、c - FOS、DNA拓扑异构酶II、DNA聚合酶α、二氢叶酸还原酶、胸苷激酶、微管相关蛋白4(MAP4)和微管相关蛋白4(stathmin)表达下调。在抗蛋氨酸应激的SWB77中,上述基因只有20%受到影响,而且影响程度较小。此外,在SWB77中观察到的一些变化与依赖蛋氨酸的肿瘤中的变化相反,包括p21、TRAIL - R2和TIEG的表达。尽管存在相似性,但依赖蛋氨酸的肿瘤之间的差异很大,尤其是在细胞因子表达的调控方面。蛋白质印迹分析证实,蛋氨酸应激导致以下结果:(a)在野生型p(53)细胞系SWB61和40中,GADD45α和γ显著增加;(b)在所有依赖蛋氨酸的细胞系中,GADD34和p21蛋白增加;(c)在DAOY和SWB39中诱导MDA7和磷酸化p38,这与蛋氨酸应激下前者的显著转录激活一致。另外还表明,蛋氨酸应激通过降低AKT磷酸化来下调高活性磷脂酰肌醇3' - 激酶途径,尤其是在DAOY和SWB77中,并且还降低了视网膜母细胞瘤(Rb)和磷酸化Rb(P - ser780、P - ser795和P - ser807/811)的水平,导致所有依赖蛋氨酸的细胞系中未磷酸化形式的比例增加。免疫组织化学分析表明,在依赖蛋氨酸的细胞系中,蛋氨酸应激下核因子κB的核转位受到显著抑制。在本研究中,我们首次表明蛋氨酸应激在中枢神经系统肿瘤中调动了几个明确的细胞周期检查点和促凋亡途径,同时协同抑制促生存机制。显然,蛋氨酸应激诱导的细胞毒性不受p(53)突变状态的限制。