Suppr超能文献

使用属性向量作为体素的形态特征来确定三维磁共振脑图像中的对应关系。

Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels.

作者信息

Xue Zhong, Shen Dinggang, Davatzikos Christos

机构信息

Section of Biomedical Image Analysis, Department of Radiology School of Medicine, University of Pennsylvania, 3600 Market ST Suite 380, Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Med Imaging. 2004 Oct;23(10):1276-91. doi: 10.1109/TMI.2004.834616.

Abstract

Finding point correspondence in anatomical images is a key step in shape analysis and deformable registration. This paper proposes an automatic correspondence detection algorithm for intramodality MR brain images of different subjects using wavelet-based attribute vectors (WAVs) defined on every image voxel. The attribute vector (AV) is extracted from the wavelet subimages and reflects the image structure in a large neighborhood around the respective voxel in a multiscale fashion. It plays the role of a morphological signature for each voxel, and our goal is, therefore, to make it distinctive of the respective voxel. Correspondence is then determined from similarities of AVs. By incorporating the prior knowledge of the spatial relationship among voxels, the ability of the proposed algorithm to find anatomical correspondence is further improved. Experiments with MR images of human brains show that the algorithm performs similarly to experts, even for complex cortical structures.

摘要

在解剖图像中找到点对应关系是形状分析和可变形配准中的关键步骤。本文提出了一种基于小波的属性向量(WAV)的自动对应检测算法,用于不同受试者的模态内磁共振脑图像,该属性向量定义在每个图像体素上。属性向量(AV)从小波子图像中提取,并以多尺度方式反映各个体素周围大邻域内的图像结构。它充当每个体素的形态特征,因此,我们的目标是使其对各个体素具有独特性。然后根据AV的相似性确定对应关系。通过纳入体素间空间关系的先验知识,进一步提高了所提算法找到解剖对应关系的能力。对人类大脑磁共振图像的实验表明,该算法的表现与专家类似,即使对于复杂的皮质结构也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验