Suppr超能文献

MulViMotion:多视图心脏 MRI 下的形状感知 3D 心肌运动跟踪

MulViMotion: Shape-Aware 3D Myocardial Motion Tracking From Multi-View Cardiac MRI.

出版信息

IEEE Trans Med Imaging. 2022 Aug;41(8):1961-1974. doi: 10.1109/TMI.2022.3154599. Epub 2022 Aug 1.

Abstract

Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.

摘要

从电影心脏磁共振(CMR)成像中恢复心脏的 3D 运动,能够评估区域性心肌功能,对于理解和分析心血管疾病很重要。然而,3D 心脏运动估计具有挑战性,因为获取的电影 CMR 图像通常是 2D 切片,这限制了对平面内运动的准确估计。为了解决这个问题,我们提出了一种新的多视图运动估计网络(MulViMotion),它集成了短轴和长轴平面上获取的 2D 电影 CMR 图像,以学习心脏一致的 3D 运动场。在提出的方法中,构建了一个混合的 2D/3D 网络,通过从多视图图像中学习融合表示来生成密集的 3D 运动场。为了确保 3D 运动估计的一致性,在训练过程中引入了形状正则化模块,利用多视图图像中的形状信息为 3D 运动估计提供弱监督。我们在 UK Biobank 研究中 580 名受试者的 2D 电影 CMR 图像上对所提出的方法进行了广泛评估,用于左心室心肌的 3D 运动跟踪。实验结果表明,所提出的方法在定量和定性上都优于竞争方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/640d/9429823/41e9aaf6b820/meng1abcd-3154599.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验