Chanoine Christophe, Della Gaspera Bruno, Charbonnier Frédéric
UMR 7060 CNRS, Equipe Biologie du Développement et de la Différenciation Neuromusculaire, Centre Universitaire des Saints-Pères, Université René Descartes, Paris, France.
Dev Dyn. 2004 Dec;231(4):662-70. doi: 10.1002/dvdy.20174.
The discovery, in the late 1980s, of the MyoD gene family of muscle transcription factors has proved to be a milestone in understanding the molecular events controlling the specification and differentiation of the muscle lineage. From gene knock-out mice experiments progressively emerged the idea that each myogenic regulatory factor (MRF) has evolved a specialized as well as a redundant role in muscle differentiation. To date, MyoD serves as a paradigm for the MRF mode of function. The features of gene regulation by MyoD support a model in which subprograms of gene expression are achieved by the combination of promoter-specific regulation of MyoD binding and MyoD-mediated binding of various ancillary proteins. This binding likely includes site-specific chromatin reorganization by means of direct or indirect interaction with remodeling enzymes. In this cascade of molecular events leading to the proper and reproducible activation of muscle gene expression, the role and mode of function of other MRFs still remains largely unclear. Recent in vivo findings using the Xenopus embryo model strongly support the concept that a single MRF can specifically control a subset of muscle genes and, thus, can be substituted by other MRFs albeit with dramatically lower efficiency. The topic of this review is to summarize the molecular data accounting for a redundant and/or specific involvement of each member of the MyoD family in myogenesis in the light of recent studies on the Xenopus model.
20世纪80年代末,肌肉转录因子MyoD基因家族的发现被证明是理解控制肌肉谱系特化和分化的分子事件的一个里程碑。从基因敲除小鼠实验中逐渐形成了这样一种观点,即每个生肌调节因子(MRF)在肌肉分化中都发挥着专门的以及冗余的作用。迄今为止,MyoD是MRF功能模式的一个范例。MyoD对基因的调控特征支持了一种模型,即基因表达的子程序是通过MyoD结合的启动子特异性调控以及MyoD介导的各种辅助蛋白的结合来实现的。这种结合可能包括通过与重塑酶的直接或间接相互作用进行位点特异性染色质重组。在导致肌肉基因表达正确且可重复激活的这一系列分子事件中,其他MRF的作用和功能模式仍很大程度上不清楚。最近使用非洲爪蟾胚胎模型的体内研究结果有力地支持了这样一种概念,即单个MRF可以特异性地控制一部分肌肉基因,因此,尽管效率显著降低,但可以被其他MRF替代。本综述的主题是根据最近对非洲爪蟾模型的研究,总结解释MyoD家族每个成员在肌生成中冗余和/或特异性参与的分子数据。