Odunsi Kunle, Wollman Robert M, Ambrosone Christine B, Hutson Alan, McCann Susan E, Tammela Jonathan, Geisler John P, Miller Gregory, Sellers Thomas, Cliby William, Qian Feng, Keitz Bernadette, Intengan Marilyn, Lele Shashikant, Alderfer James L
Division of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14261, USA.
Int J Cancer. 2005 Feb 20;113(5):782-8. doi: 10.1002/ijc.20651.
Currently available serum biomarkers are insufficiently reliable to distinguish patients with epithelial ovarian cancer (EOC) from healthy individuals. Metabonomics, the study of metabolic processes in biologic systems, is based on the use of (1)H-NMR spectroscopy and multivariate statistics for biochemical data generation and interpretation and may provide a characteristic fingerprint in disease. In an effort to examine the utility of the metabonomic approach for discriminating sera from women with EOC from healthy controls, we performed (1)H-NMR spectroscopic analysis on preoperative serum specimens obtained from 38 patients with EOC, 12 patients with benign ovarian cysts and 53 healthy women. After data reduction, we applied both unsupervised Principal Component Analysis (PCA) and supervised Soft Independent Modeling of Class Analogy (SIMCA) for pattern recognition. The sensitivity and specificity tradeoffs were summarized for each variable using the area under the receiver-operating characteristic (ROC) curve. In addition, we analyzed the regions of NMR spectra that most strongly influence separation of sera of EOC patients from healthy controls. PCA analysis allowed correct separation of all serum specimens from 38 patients with EOC (100%) from all of the 21 premenopausal normal samples (100%) and from all the sera from patients with benign ovarian disease (100%). In addition, it was possible to correctly separate 37 of 38 (97.4%) cancer specimens from 31 of 32 (97%) postmenopausal control sera. SIMCA analysis using the Cooman's plot demonstrated that sera classes from patients with EOC, benign ovarian cysts and the postmenopausal healthy controls did not share multivariate space, providing validation for the class separation. ROC analysis indicated that the sera from patients with and without disease could be identified with 100% sensitivity and specificity at the (1)H-NMR regions 2.77 parts per million (ppm) and 2.04 ppm from the origin (AUC of ROC curve = 1.0). In addition, the regression coefficients most influential for the EOC samples compared to postmenopausal controls lie around delta3.7 ppm (due mainly to sugar hydrogens). Other loadings most influential for the EOC samples lie around delta2.25 ppm and delta1.18 ppm. These findings indicate that (1)H-NMR metabonomic analysis of serum achieves complete separation of EOC patients from healthy controls. The metabonomic approach deserves further evaluation as a potential novel strategy for the early detection of epithelial ovarian cancer.
目前可用的血清生物标志物的可靠性不足以区分上皮性卵巢癌(EOC)患者与健康个体。代谢组学是对生物系统中代谢过程的研究,基于使用氢核磁共振(¹H-NMR)光谱和多变量统计来生成和解释生化数据,可能会提供疾病的特征指纹图谱。为了检验代谢组学方法在区分EOC女性患者血清与健康对照血清方面的效用,我们对38例EOC患者、12例良性卵巢囊肿患者和53名健康女性术前采集的血清标本进行了¹H-NMR光谱分析。数据简化后,我们应用无监督主成分分析(PCA)和有监督的类软独立建模(SIMCA)进行模式识别。使用受试者操作特征(ROC)曲线下面积总结每个变量的灵敏度和特异性权衡。此外,我们分析了NMR光谱中对区分EOC患者血清与健康对照血清影响最大的区域。PCA分析能够将38例EOC患者的所有血清标本(100%)与21例绝经前正常样本中的所有样本(100%)以及良性卵巢疾病患者的所有血清(100%)正确分离。此外,还能够从32例绝经后对照血清中的31例(97%)正确分离出38例癌症标本中的37例(97.4%)。使用库曼图的SIMCA分析表明,EOC患者、良性卵巢囊肿患者和绝经后健康对照的血清类别不共享多变量空间,为类别分离提供了验证。ROC分析表明,在距原点百万分之2.77(ppm)和2.04 ppm的¹H-NMR区域,疾病患者和非疾病患者的血清能够以100%的灵敏度和特异性被识别(ROC曲线的AUC = 1.0)。此外,与绝经后对照相比,对EOC样本影响最大的回归系数位于约δ3.7 ppm附近(主要归因于糖氢)。对EOC样本影响最大的其他负荷位于约δ2.25 ppm和δ1.18 ppm附近。这些发现表明,血清的¹H-NMR代谢组学分析能够实现EOC患者与健康对照的完全分离。代谢组学方法作为上皮性卵巢癌早期检测的潜在新策略值得进一步评估。