Paulat Florian, Kuschel Torben, Näther Christian, Praneeth V K K, Sander Ole, Lehnert Nicolai
Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
Inorg Chem. 2004 Nov 1;43(22):6979-94. doi: 10.1021/ic049302i.
The spectroscopic properties and the electronic structure of the only nitrous oxide complex existing in isolated form, [Ru(NH(3))(5)(N(2)O)]X(2) (1, X = Br(-), BF(4)(-)), are investigated in detail in comparison to the nitric oxide precursor, [Ru(NH(3))(5)(NO)]X(3) (2). IR and Raman spectra of 1 and of the corresponding (15)NNO labeled complex are presented and assigned with the help of normal coordinate analysis (NCA) and density functional (DFT) calculations. This allows for the identification of the Ru-N(2)O stretch at approximately 300 cm(-)(1) and for the unambiguous definition of the binding mode of the N(2)O ligand as N-terminal. Obtained force constants are 17.3, 9.6, and 1.4 mdyn/A for N-N, N-O, and Ru-N(2)O, respectively. The Ru(II)-N(2)O bond is dominated by pi back-donation, which, however, is weak compared to the NO complex. This bond is further weakened by Coulomb repulsion between the fully occupied t(2g) shell of Ru(II) and the HOMO of N(2)O. Hence, nitrous oxide is an extremely weak ligand to Ru(II). Calculated free energies and formation constants for Ru(NH(3))(5)(L) (L = NNO, N(2), OH(2)) are in good agreement with experiment. The observed intense absorption at 238 nm of 1 is assigned to the t(2g) --> pi(*) charge transfer transition. These data are compared in detail to the spectroscopic and electronic structural properties of NO complex 2. Finally, the transition metal centered reaction of nitrous oxide to N(2) and H(2)O is investigated. Nitrous oxide is activated by back-donation. Initial protonation leads to a weakening of the N-O bond and triggers electron transfer from the metal to the NN-OH ligand through the pi system. The implications of this mechanism for biological nitrous oxide reduction are discussed.
与一氧化氮前体[Ru(NH₃)₅(NO)]X₃(2)相比,对以分离形式存在的唯一一氧化二氮配合物[Ru(NH₃)₅(N₂O)]X₂(1,X = Br⁻,BF₄⁻)的光谱性质和电子结构进行了详细研究。给出了1和相应的¹⁵NNO标记配合物的红外光谱和拉曼光谱,并借助简正坐标分析(NCA)和密度泛函(DFT)计算进行了归属。这使得能够识别出约300 cm⁻¹处的Ru-N₂O伸缩振动,并明确将N₂O配体的结合模式定义为N端。得到的N-N、N-O和Ru-N₂O的力常数分别为17.3、9.6和1.4 mdyn/Å。Ru(II)-N₂O键以π反馈键为主,但与NO配合物相比较弱。Ru(II)的完全占据的t₂g壳层与N₂O的最高占据分子轨道(HOMO)之间的库仑排斥进一步削弱了该键。因此,一氧化二氮是Ru(II)的极弱配体。计算得到的[Ru(NH₃)₅(L)]²⁺(L = NNO、N₂、OH₂)的自由能和形成常数与实验结果吻合良好。观察到1在238 nm处有强烈吸收,归因于t₂g→π*电荷转移跃迁。将这些数据与NO配合物2的光谱和电子结构性质进行了详细比较。最后,研究了以过渡金属为中心的一氧化二氮生成N₂和H₂O的反应。一氧化二氮通过反馈键被活化。初始质子化导致N-O键减弱,并引发电子通过π体系从金属转移到NN-OH配体。讨论了该机制对生物一氧化二氮还原的影响。