Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, USA.
Nat Chem. 2014 Jul;6(7):590-5. doi: 10.1038/nchem.1956. Epub 2014 May 18.
Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.
已知酶促血红素和非血红素高价铁-氧物种能够激活强 C-H 键,但在合成系统中复制这种反应性仍然是一个艰巨的挑战。尽管末端铁-氧部分的不稳定性也许是首要障碍,但空间和电子因素也限制了先前报道的单核铁(IV)-氧化合物的活性。特别是,尽管自然界中的非血红素铁(IV)-氧化合物具有高自旋 S = 2 基态,但在分子物种中很难实现这种电子构型。这些挑战在以受限的弱场配体环境中具有隔离铁中心的金属有机骨架中可能会得到缓解。在这里,我们表明金属有机骨架 Fe2(dobdc)(dobdc(4-) = 2,5-二氧代-1,4-苯二甲酸根)及其镁稀释类似物 Fe0.1Mg1.9(dobdc)能够激活乙烷的 C-H 键,并将其转化为乙醇和乙醛,使用一氧化二氮作为末端氧化剂。电子结构计算表明,活性氧化剂可能是高自旋 S = 2 铁(IV)-氧物种。