Ortega-Lepe Isabel, Sánchez Práxedes, Santos Laura L, Lara Patricia, Rendón Nuria, López-Serrano Joaquín, Salazar-Pereda Verónica, Álvarez Eleuterio, Paneque Margarita, Suárez Andrés
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain.
Área Académica de Químicas, Universidad Autónoma del Estado de Hidalgo, 42184 Mineral de la Reforma, Hidalgo, Mexico.
Inorg Chem. 2022 Nov 21;61(46):18590-18600. doi: 10.1021/acs.inorgchem.2c02963. Epub 2022 Nov 8.
Reduction of nitrous oxide (NO) with H to N and water is an attractive process for the decomposition of this greenhouse gas to environmentally benign species. Herein, a series of iridium complexes based on proton-responsive pincer ligands (-) are shown to catalyze the hydrogenation of NO under mild conditions (2 bar H/NO (1:1), 30 °C). Among the tested catalysts, the Ir complex , based on a lutidine-derived CNP pincer ligand having nonequivalent phosphine and N-heterocyclic carbene (NHC) side donors, gave rise to the highest catalytic activity (turnover frequency (TOF) = 11.9 h at 30 °C, and 16.4 h at 55 °C). Insights into the reaction mechanism with have been obtained through NMR spectroscopy. Thus, reaction of with NO in tetrahydrofuran- (THF-) initially produces deprotonated (at the NHC arm) species , which readily reacts with H to regenerate the trihydride complex . However, prolonged exposure of to NO for 6 h yields the dinitrogen Ir(I) complex , having a deprotonated (at the P-arm) pincer ligand. Complex is a poor catalytic precursor in the NO hydrogenation, pointing out to the formation of as a catalyst deactivation pathway. Moreover, when the reaction of with NO is carried out in wet THF-, formation of a new species, which has been assigned to the hydroxo species , is observed. Finally, taking into account the experimental results, density functional theory (DFT) calculations were performed to get information on the catalytic cycle steps. Calculations are in agreement with as the TOF-determining intermediate (TDI) and the transfer of an apical hydrido ligand to the terminal nitrogen atom of NO as the TOF-determining transition state (TDTS), with very similar reaction rates for the mechanisms involving either the NHC- or the P-CH pincer methylene linkers.
用氢气将一氧化二氮(NO)还原为氮气和水是将这种温室气体分解为环境友好型物质的一个有吸引力的过程。在此,一系列基于质子响应型钳形配体(-)的铱配合物被证明能在温和条件下(2巴氢气/NO(1:1),30℃)催化NO的氢化反应。在所测试的催化剂中,基于具有不等价膦和N-杂环卡宾(NHC)侧基供体的2,6-二甲基吡啶衍生的CNP钳形配体的Ir配合物表现出最高的催化活性(30℃时周转频率(TOF) = 11.9 h⁻¹,55℃时为16.4 h⁻¹)。通过核磁共振光谱对与该配合物的反应机理有了深入了解。因此,该配合物在四氢呋喃 - (THF - d₈)中与NO反应最初生成(在NHC臂上去质子化的)物种,其很容易与氢气反应再生三氢化物配合物。然而,将该配合物长时间暴露于NO中6小时会生成二氮铱(I)配合物,其具有(在P臂上去质子化的)钳形配体。配合物在NO氢化反应中是一种较差的催化前体,表明生成该配合物是催化剂失活的一条途径。此外,当该配合物与NO在湿的THF - d₈中反应时,观察到形成了一种新物种,已将其归属为羟基物种。最后,考虑到实验结果,进行了密度泛函理论(DFT)计算以获取有关催化循环步骤的信息。计算结果与作为TOF决定中间体(TDI)以及顶端氢化物配体向NO末端氮原子的转移作为TOF决定过渡态(TDTS)相符,对于涉及NHC - 或P - CH钳形亚甲基连接基的机理,反应速率非常相似。