Faugeras Olivier, Adde Geoffray, Charpiat Guillaume, Chefd'hotel Christophe, Clerc Maureen, Deneux Thomas, Deriche Rachid, Hermosillo Gerardo, Keriven Renaud, Kornprobst Pierre, Kybic Jan, Lenglet Christophe, Lopez-Perez Lucero, Papadopoulo Théo, Pons Jean-Philippe, Segonne Florent, Thirion Bertrand, Tschumperlé David, Viéville Thierry, Wotawa Nicolas
Odyssée Laboratory-ENPC/ENS/INRIA, INRIA, BP93, 06902 Sophia-Antipolis, France.
Neuroimage. 2004;23 Suppl 1:S46-55. doi: 10.1016/j.neuroimage.2004.07.015.
We survey the recent activities of the Odyssée Laboratory in the area of the application of mathematics to the design of models for studying brain anatomy and function. We start with the problem of reconstructing sources in MEG and EEG, and discuss the variational approach we have developed for solving these inverse problems. This motivates the need for geometric models of the head. We present a method for automatically and accurately extracting surface meshes of several tissues of the head from anatomical magnetic resonance (MR) images. Anatomical connectivity can be extracted from diffusion tensor magnetic resonance images but, in the current state of the technology, it must be preceded by a robust estimation and regularization stage. We discuss our work based on variational principles and show how the results can be used to track fibers in the white matter (WM) as geodesics in some Riemannian space. We then go to the statistical modeling of functional magnetic resonance imaging (fMRI) signals from the viewpoint of their decomposition in a pseudo-deterministic and stochastic part that we then use to perform clustering of voxels in a way that is inspired by the theory of support vector machines and in a way that is grounded in information theory. Multimodal image matching is discussed next in the framework of image statistics and partial differential equations (PDEs) with an eye on registering fMRI to the anatomy. The paper ends with a discussion of a new theory of random shapes that may prove useful in building anatomical and functional atlases.
我们综述了奥德赛实验室近期在数学应用于脑解剖结构和功能研究模型设计领域的活动。我们从脑磁图(MEG)和脑电图(EEG)中源重建问题入手,讨论了我们为解决这些逆问题而开发的变分方法。这激发了对头的几何模型的需求。我们提出了一种从解剖磁共振(MR)图像中自动准确提取头部多个组织表面网格的方法。解剖连接性可从扩散张量磁共振图像中提取,但在当前技术状态下,这之前必须经过一个稳健的估计和正则化阶段。我们讨论基于变分原理的工作,并展示结果如何用于将白质(WM)中的纤维追踪为某个黎曼空间中的测地线。然后,我们从功能磁共振成像(fMRI)信号的统计建模角度出发,将其分解为伪确定性部分和随机部分,接着以受支持向量机理论启发且基于信息论的方式用于对体素进行聚类。接下来在图像统计和偏微分方程(PDE)框架下讨论多模态图像匹配,着眼于将fMRI与解剖结构配准。本文最后讨论了一种新的随机形状理论,该理论可能在构建解剖和功能图谱方面有用。