Dong Xiaoming, Zhang Zhengwu, Srivastava Anuj
Department of Statistics, Florida State UniversityTallahassee, FL, United States.
The Statistical and Applied Mathematical Sciences Institute (SAMSI), Research Triangle ParkDurham, NC, United States.
Front Neurosci. 2017 Sep 7;11:483. doi: 10.3389/fnins.2017.00483. eCollection 2017.
The problem of estimating neuronal fiber tracts connecting different brain regions is important for various types of brain studies, including understanding brain functionality and diagnosing cognitive impairments. The popular techniques for tractography are mostly sequential-tracts are grown sequentially following principal directions of local water diffusion profiles. Despite several advancements on this basic idea, the solutions easily get stuck in local solutions, and can't incorporate global shape information. We present a global approach where fiber tracts between regions of interest are initialized and updated via deformations based on gradients of a posterior energy. This energy has contributions from diffusion data, global shape models, and roughness penalty. The resulting tracts are relatively immune to issues such as tensor noise and fiber crossings, and achieve more interpretable tractography results. We demonstrate this framework using both simulated and real dMRI and HARDI data.
估计连接不同脑区的神经纤维束的问题对于各类脑研究都很重要,包括理解脑功能和诊断认知障碍。目前流行的纤维束成像技术大多是顺序式的——纤维束沿着局部水扩散剖面的主方向依次生长。尽管基于这一基本理念有了一些进展,但这些解决方案很容易陷入局部解,并且无法纳入全局形状信息。我们提出了一种全局方法,其中感兴趣区域之间的纤维束通过基于后验能量梯度的变形来初始化和更新。这种能量来自扩散数据、全局形状模型和粗糙度惩罚。由此产生的纤维束对诸如张量噪声和纤维交叉等问题具有相对免疫力,并能实现更具可解释性的纤维束成像结果。我们使用模拟和真实的扩散磁共振成像(dMRI)及高角分辨率扩散成像(HARDI)数据展示了这个框架。