Jeong Won-Ki, Fletcher P Thomas, Tao Ran, Whitaker Ross
Scientific Computing and Imaging Instiutte, School of Computing, University of Utah, Salt Lake City 84112, USA.
IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1480-7. doi: 10.1109/TVCG.2007.70571.
In this paper we present a method to compute and visualize volumetric white matter connectivity in diffusion tensor magnetic resonance imaging (DT-MRI) using a Hamilton-Jacobi (H-J) solver on the GPU (Graphics Processing Unit). Paths through the volume are assigned costs that are lower if they are consistent with the preferred diffusion directions. The proposed method finds a set of voxels in the DTI volume that contain paths between two regions whose costs are within a threshold of the optimal path. The result is a volumetric optimal path analysis, which is driven by clinical and scientific questions relating to the connectivity between various known anatomical regions of the brain. To solve the minimal path problem quickly, we introduce a novel numerical algorithm for solving H-J equations, which we call the Fast Iterative Method (FIM). This algorithm is well-adapted to parallel architectures, and we present a GPU-based implementation, which runs roughly 50-100 times faster than traditional CPU-based solvers for anisotropic H-J equations. The proposed system allows users to freely change the endpoints of interesting pathways and to visualize the optimal volumetric path between them at an interactive rate. We demonstrate the proposed method on some synthetic and real DT-MRI datasets and compare the performance with existing methods.
在本文中,我们提出了一种方法,用于在扩散张量磁共振成像(DT-MRI)中使用图形处理单元(GPU)上的哈密顿-雅可比(H-J)求解器来计算和可视化体素白质连通性。穿过该体积的路径被赋予成本,如果它们与首选扩散方向一致,则成本较低。所提出的方法在DTI体积中找到一组体素,这些体素包含两个区域之间的路径,其成本在最优路径的阈值范围内。结果是一个体素最优路径分析,它由与大脑各个已知解剖区域之间的连通性相关的临床和科学问题驱动。为了快速解决最小路径问题,我们引入了一种用于求解H-J方程的新颖数值算法,我们称之为快速迭代方法(FIM)。该算法非常适合并行架构,并且我们展示了一种基于GPU的实现,其运行速度比传统的基于CPU的各向异性H-J方程求解器快约50-100倍。所提出的系统允许用户自由更改感兴趣路径的端点,并以交互速率可视化它们之间的最优体素路径。我们在一些合成和真实的DT-MRI数据集上演示了所提出的方法,并将性能与现有方法进行了比较。