Manter Daniel K, Kerrigan Julia
USDA Forest Service, PNW Research Station, 3200 Jefferson Way, Corvallis, OR 97331, USA.
J Exp Bot. 2004 Dec;55(408):2581-8. doi: 10.1093/jxb/erh260. Epub 2004 Oct 22.
The analysis and interpretation of A/C(i) curves (net CO(2) assimilation rate, A, versus calculated substomatal CO(2) concentration, C(i)) is dependent upon a number of underlying assumptions. The influence of the C(i) value at which the A/C(i) curve switches between the Rubisco- and electron transport-limited portions of the curve was examined on A/C(i) curve parameter estimates, as well as the effect of mesophyll CO(2) conductance (g(m)) values on estimates of the maximum rate of Rubisco-mediated carboxylation (V(cmax)). Based on an analysis using 19 woody species from the Pacific Northwest, significant variation occurred in the C(i) value where the Rubisco- and electron transport-limited portions of the curve intersect (C(i_t)), ranging from 20 Pa to 152 Pa and averaging c. 71 Pa and 37 Pa for conifer and broadleaf species, respectively. Significant effects on estimated A/C(i) parameters (e.g. V(cmax)) may arise when preliminary estimates of C(i_t), necessary for the multiple regression analyses, are set either too high or too low. However, when the appropriate threshold is used, a significant relationship between A/C(i) and chlorophyll fluorescence estimates of carboxylation is achieved. The use of the V(cmax) parameter to describe accurately the Rubisco activity from the A/C(i) curve analysis is also dependent upon the assumption that C(i) is approximately equal to chloroplast CO(2) concentrations (C(c)). If leaf mesophyll conductance is low, C(c) will be much lower than C(i) and will result in an underestimation of V(cmax) from A/C(i) curves. A large range of mesophyll conductance (g(m)) values was observed across the 19 species (0.005+/-0.002 to 0.189+/-0.011 mol m(-2) s(-1) for Tsuga heterophylla and Quercus garryana, respectively) and, on average, g(m) was 1.9 times lower for the conifer species (0.058+/-0.017 mol m(-2) s(-1) for conifers versus 0.112+/-0.020 mol m(-2) s(-1) for broadleaves). When this mesophyll limitation was accounted for in V(cmax) estimates, considerable variation still existed between species, but the difference in V(cmax) between conifer and broadleaf species was reduced from c. 11 micromol m(-2) s(-1) to 4 micromol m(-2) s(-1). For example, A/C(i) curve estimates of V(cmax) were 31.2+/-6.2 and 42.2+/-4.4 micromol m(-2) s(-1), and A/C(c) curve estimates were 41.2+/-7.1 micromol m(-2) s(-1) and 45.0+/-4.8 micromol m(-2) s(-1), for the conifer and broadleaf species, respectively.
对A/C(i)曲线(净二氧化碳同化率A与计算得出的胞间二氧化碳浓度C(i)的关系曲线)的分析和解读取决于一些潜在假设。研究了A/C(i)曲线在由核酮糖-1,5-二磷酸羧化酶(Rubisco)限制部分和电子传递限制部分之间转换时的C(i)值对A/C(i)曲线参数估计的影响,以及叶肉二氧化碳导度(g(m))值对Rubisco介导的羧化最大速率(V(cmax))估计的影响。基于对来自太平洋西北部的19种木本植物的分析,曲线中Rubisco限制部分和电子传递限制部分相交处的C(i)值(C(i_t))存在显著差异,范围从20帕至152帕,针叶树种和阔叶树种的平均值分别约为71帕和37帕。在多元回归分析中,若C(i_t)的初步估计值设置过高或过低,可能会对估计的A/C(i)参数(如V(cmax))产生显著影响。然而,当使用合适的阈值时,A/C(i)与羧化作用的叶绿素荧光估计值之间可建立显著关系。通过A/C(i)曲线分析准确描述Rubisco活性时,使用V(cmax)参数还依赖于C(i)近似等于叶绿体二氧化碳浓度(C(c))这一假设。如果叶肉导度较低,C(c)将远低于C(i),并导致从A/C(i)曲线低估V(cmax)。在这19个物种中观察到叶肉导度(g(m))值的范围很大(异叶铁杉和加里栎分别为0.005±0.002至0.189±0.011摩尔·米⁻²·秒⁻¹),针叶树种的g(m)平均比阔叶树种低1.9倍(针叶树种为0.058±0.017摩尔·米⁻²·秒⁻¹,阔叶树种为0.112±0.020摩尔·米⁻²·秒⁻¹)。当在V(cmax)估计中考虑这种叶肉限制时,物种间仍存在相当大的差异,但针叶树种和阔叶树种之间V(cmax)的差异从约11微摩尔·米⁻²·秒⁻¹降至4微摩尔·米⁻²·秒⁻¹。例如,针叶树种和阔叶树种的A/C(i)曲线估计的V(cmax)分别为31.2±6.2和42.2±4.4微摩尔·米⁻²·秒⁻¹,A/C(c)曲线估计分别为41.2±7.1和45.0±4.8微摩尔·米⁻²·秒⁻¹。