Suppr超能文献

基于GPSO的用于非线性系统的鲁棒自适应递归小脑模型神经网络

Robust Adaptive Recurrent Cerebellar Model Neural Network for Non-linear System Based on GPSO.

作者信息

Guan Jian-Sheng, Hong Shao-Jiang, Kang Shao-Bo, Zeng Yong, Sun Yuan, Lin Chih-Min

机构信息

College of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, China.

Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.

出版信息

Front Neurosci. 2019 May 29;13:390. doi: 10.3389/fnins.2019.00390. eCollection 2019.

Abstract

A robust adaptive recurrent cerebellar model articulation controller (RARC) neural network for non-linear systems using the genetic particle swarm optimization (GPSO) algorithm is presented in this study. The RARC is used as the principal tracking controller and the robust compensation controller is designed to recover the residual of the approximation error. In the RARC neural network, the steepest descent gradient method and the Lyapunov function are used for deriving the adaptive law parameter of the system. Besides, the learning rates play an important role in these adaptive laws and they have a great effect on the functions of control systems. In this paper, the combination of the genetic algorithm with the mutation particle swarm optimization algorithm is applied to seek for the optimal learning rates of the RARC adaptation laws. The numerical simulations about the inverted pendulum system as well as the robot manipulator system are given to confirm the effectiveness and practicability of the GPSO-RARC-based control system. Compared with other control schemes, the proposed control scheme is testified to be reliable and can obtain the optimal parameter about the learning rates and the minimum root mean square error for non-linear systems.

摘要

本研究提出了一种基于遗传粒子群优化(GPSO)算法的用于非线性系统的鲁棒自适应递归小脑模型关节控制器(RARC)神经网络。RARC用作主要跟踪控制器,设计了鲁棒补偿控制器以恢复逼近误差的残差。在RARC神经网络中,采用最速下降梯度法和李雅普诺夫函数来推导系统的自适应律参数。此外,学习率在这些自适应律中起着重要作用,它们对控制系统的性能有很大影响。本文将遗传算法与变异粒子群优化算法相结合,用于寻找RARC自适应律的最优学习率。给出了关于倒立摆系统和机器人机械手系统的数值仿真,以验证基于GPSO - RARC的控制系统的有效性和实用性。与其他控制方案相比,所提出的控制方案被证明是可靠的,并且可以获得非线性系统学习率的最优参数和最小均方根误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aac/6548856/b9ad10e1e9c7/fnins-13-00390-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验