Suppr超能文献

基于多组合作的共生进化用于TSK型神经模糊系统设计

Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design.

作者信息

Cheng Yi-Chang, Hsu Yung-Chi, Lin Sheng-Fuu

机构信息

Department of Electrical and Control Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, R.O.C.

出版信息

Expert Syst Appl. 2010 Jul 1;37(7):5320-5330. doi: 10.1016/j.eswa.2010.01.003.

Abstract

In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations.

摘要

本文提出了一种基于多组合作共生进化方法的TSK型神经模糊系统(TNFS-MGCSE)。TNFS-MGCSE是从共生进化发展而来的。共生进化不同于传统的遗传算法,在共生进化中,每个染色体代表一个模糊模型规则。MGCSE与传统的共生进化不同;在MGCSE中,一个种群被划分为几个组。由一组染色体组成的每个组代表一个模糊规则,并与其他组合作,通过所提出的基于合作的交叉策略(CCS)生成更好的染色体。本文通过数值例子(Mackey-Glass混沌时间序列和太阳黑子数预测)对所提出的TNFS-MGCSE进行评估。在模拟中,TNFS-MGCSE的性能与其他现有模型相比表现出色。

相似文献

8
Application of hydrologic forecast model.水文预测模型的应用。
Water Sci Technol. 2012;66(2):239-46. doi: 10.2166/wst.2012.161.

本文引用的文献

4
VGA-Classifier: design and applications.VGA分类器:设计与应用
IEEE Trans Syst Man Cybern B Cybern. 2000;30(6):890-5. doi: 10.1109/3477.891151.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验