González-Coloma Azucena, Reina Matías, Medinaveitia Alberto, Guadaño Ana, Santana Omar, Martínez-Díaz Rafael, Ruiz-Mesía Lastenia, Alva Allenger, Grandez Maritza, Díaz Rafael, Gavín José A, De la Fuente Gabriel
Centro de Ciencias Medioambientales, CSIC, Serrano 115-dpdo, 28006 Madrid, Spain.
J Chem Ecol. 2004 Jul;30(7):1393-408. doi: 10.1023/b:joec.0000037747.74665.0a.
We have tested the insect antifeedant and toxic activity of 43 norditerpenoid alkaloids on Spodoptera littoralis and Leptinotarsa decemlineata including eserine (physostigmine), anabasine, and atropine. Antifeedant effects of the test compounds were structure- and species-dependent. The most active antifeedants to L. decemlineata were 1,14-diacetylcardiopetaline (9) and 18-hydroxy- 14-O-methylgadesine (33), followed by 8-O-methylconsolarine (12), 14-O-acetyldelectinine (27), karakoline (7), cardiopetaline (8), 18-O-demethylpubescenine (13), 14-O-acetyldeltatsine (18), takaosamine (21), ajadine (24), and 8-O-methylcolumbianine (6) (EC50 < 1 microg/cm2). This insect showed a moderate response to atropine. S. littoralis had the strongest antifeedant response to 24, 18, 14-O-acetyldelcosine (19), and delphatine (29) (EC50 < 3 microg/cm2). None of the model substances affected the feeding behavior of this insect. The most toxic compound to L. decemlineata was aconitine (1), followed by cardiopetalidine (10) (% mortality > 60), 14-deacetylpubescenine (14), 18-O-benzoyl-18-O-demethyl-14-O-deacetylpubescenine (17), 14-O-acetyldelcosine (19), 14-deacetylajadine (25) and methyllycaconitine (30) (% mortality > 45). Orally injected S. littoralis larvae were negatively affected by 1, cardiopetaline (8), 10, 1,14-O-acetylcardiopetalidina (11), 12, 14, 1,18-O-diacetyl-19-oxo-gigactonine (41), olivimine (43), and eserine in varying degrees. Their antifeedant or insecticidal potencies did not parallel their reported nAChR binding activity, but did correlate with the agonist/antagonist insecticidal/antifeedant model proposed for nicotininc insecticides. A few compounds [14, tuguaconitine (38), 14-demethyldelboxine (40), 19, dehydrodelsoline (36), 18-O-demethylpubescenine (13), 41, 9, and delcosine (23)] had selective cytotoxic effects to ward insect-derived Sf9 cells. None were cytotoxic to mammalian CHO cells and none increased Trypanosoma cruzi mortality. The selective cytotoxic effects of some structures indicate that they can act on biological targets other than neuroreceptors.
我们测试了43种去甲二萜生物碱对斜纹夜蛾和马铃薯甲虫的拒食活性及毒性,这些生物碱包括毒扁豆碱(毒扁豆碱)、新烟草碱和阿托品。受试化合物的拒食作用具有结构和物种依赖性。对马铃薯甲虫活性最强的拒食剂是1,14 - 二乙酰心瓣花碱(9)和18 - 羟基 - 14 - O - 甲基加德辛(33),其次是8 - O - 甲基共梭拉林(12)、14 - O - 乙酰去甲可替宁(27)、卡拉可林(7)、心瓣花碱(8)、18 - O - 去甲基毛果芸香碱(13)、14 - O - 乙酰去甲刺桐碱(18)、高乌甲素(21)、阿扎丁(24)和8 - O - 甲基哥伦比亚宁(6)(半数有效浓度<1微克/平方厘米)。这种昆虫对阿托品反应中等。斜纹夜蛾对24、18、14 - O - 乙酰去甲乌药碱(19)和翠雀花碱(29)的拒食反应最强(半数有效浓度<3微克/平方厘米)。这些模型物质均未影响这种昆虫的取食行为。对马铃薯甲虫毒性最大的化合物是乌头碱(1),其次是心瓣花定碱(10)(死亡率>60%)、14 - 去乙酰毛果芸香碱(14)、18 - O - 苯甲酰 - 18 - O - 去甲基 - 14 - O - 去乙酰毛果芸香碱(17)、14 - O - 乙酰去甲乌药碱(19)、14 - 去乙酰阿扎丁(25)和甲基lycaconitine(30)(死亡率>45%)。经口注射的斜纹夜蛾幼虫受到1、心瓣花碱(第8号)、10、1,14 - O - 乙酰心瓣花定碱(11)、12、14、1,18 - O - 二乙酰 - 19 - 氧代 - 吉卡托宁(41)、橄榄胺(43)和毒扁豆碱不同程度的负面影响。它们的拒食或杀虫效力与报道的烟碱型乙酰胆碱受体结合活性不平行,但与为烟碱型杀虫剂提出的激动剂/拮抗剂杀虫/拒食模型相关。一些化合物[14、土瓜乌头碱(38)、14 - 去甲基去甲博落回碱(40)、19、脱氢去甲乌药碱(36)、18 - O - 去甲基毛果芸香碱(13)、41、9和去甲乌药碱(23)]对昆虫来源的Sf9细胞具有选择性细胞毒性作用。对哺乳动物CHO细胞均无细胞毒性,也未增加克氏锥虫的死亡率。一些结构的选择性细胞毒性作用表明它们可以作用于神经受体以外的生物靶点。