Suppr超能文献

SK通道阻滞剂甲基劳丹碱和甲基那可丁在细胞系和大鼠脑片中的电生理特性

Electrophysiological characterization of the SK channel blockers methyl-laudanosine and methyl-noscapine in cell lines and rat brain slices.

作者信息

Scuvée-Moreau Jacqueline, Boland Andre, Graulich Amaury, Van Overmeire Lionel, D'hoedt Dieter, Graulich-Lorge Fabienne, Thomas Elizabeth, Abras Aude, Stocker Martin, Liégeois Jean-Francois, Seutin Vincent

机构信息

Research Center for Cellular and Molecular Neurobiology and Laboratory of Pharmacology, University of Liège, B-4000 Liège, Belgium.

出版信息

Br J Pharmacol. 2004 Nov;143(6):753-64. doi: 10.1038/sj.bjp.0705979. Epub 2004 Oct 25.

Abstract

We have recently shown that the alkaloid methyl-laudanosine blocks SK channel-mediated afterhyperpolarizations (AHPs) in midbrain dopaminergic neurones. However, the relative potency of the compound on the SK channel subtypes and its ability to block AHPs of other neurones were unknown. Using whole-cell patch-clamp experiments in transfected cell lines, we found that the compound blocks SK1, SK2 and SK3 currents with equal potency: its mean IC(50)s were 1.2, 0.8 and 1.8 microM, respectively. IK currents were unaffected. In rat brain slices, methyl-laudanosine blocked apamin-sensitive AHPs in serotonergic neurones of the dorsal raphe and noradrenergic neurones of the locus coeruleus with IC(50)s of 21 and 19 microM, as compared to 15 microM in dopaminergic neurones. However, at 100 microM, methyl-laudanosine elicited a constant hyperpolarization of serotonergic neurones of about 9 mV, which was inconsistently (i.e. not in a reproducible manner) antagonized by atropine and hence partly due to the activation of muscarinic receptors. While exploring the pharmacology of related compounds, we found that methyl-noscapine also blocked SK channels. In cell lines, methyl-noscapine blocked SK1, SK2 and SK3 currents with mean IC(50)s of 5.9, 5.6 and 3.9 microM, respectively. It also did not block IK currents. Methyl-noscapine was slightly less potent than methyl-laudanosine in blocking AHPs in brain slices, its IC(50)s being 42, 37 and 29 microM in dopaminergic, serotonergic and noradrenergic neurones, respectively. Interestingly, no significant non-SK effects were observed with methyl-noscapine in slices. At a concentration of 300 microM, methyl-noscapine elicited the same changes in excitability in the three neuronal types than did a supramaximal concentration of apamin (300 nM). Methyl-laudanosine and methyl-noscapine produced a rapidly reversible blockade of SK channels as compared with apamin. The difference between the IC(50)s of apamin (0.45 nM) and methyl-laudanosine (1.8 microM) in SK3 cells was essentially due to a major difference in their k(-1) (0.028 s(-1) for apamin and >or=20 s(-1) for methyl-laudanosine). These experiments demonstrate that both methyl-laudanosine and methyl-noscapine are medium potency, quickly dissociating, SK channel blockers with a similar potency on the three SK subtypes. Methyl-noscapine may be superior in terms of specificity for the SK channels.

摘要

我们最近发现生物碱甲基劳丹碱可阻断中脑多巴胺能神经元中SK通道介导的超极化后电位(AHPs)。然而,该化合物对SK通道亚型的相对效力及其阻断其他神经元AHPs的能力尚不清楚。通过在转染细胞系中进行全细胞膜片钳实验,我们发现该化合物以相同效力阻断SK1、SK2和SK3电流:其平均半数抑制浓度(IC50)分别为1.2、0.8和1.8微摩尔。IK电流未受影响。在大鼠脑片中,甲基劳丹碱阻断中缝背核5-羟色胺能神经元和蓝斑去甲肾上腺素能神经元中对蜂毒明肽敏感的AHPs,其IC50分别为21和19微摩尔,而在多巴胺能神经元中为15微摩尔。然而,在100微摩尔时,甲基劳丹碱引起5-羟色胺能神经元持续约9毫伏的超极化,阿托品对其拮抗作用不一致(即不可重复),因此部分是由于毒蕈碱受体的激活。在探索相关化合物的药理学时,我们发现甲基那可丁也能阻断SK通道。在细胞系中,甲基那可丁阻断SK1、SK2和SK3电流,其平均IC50分别为5.9、5.6和3.9微摩尔。它也不阻断IK电流。甲基那可丁在阻断脑片中的AHPs方面效力略低于甲基劳丹碱,其在多巴胺能、5-羟色胺能和去甲肾上腺素能神经元中的IC50分别为42、37和29微摩尔。有趣的是,在脑片中未观察到甲基那可丁有明显的非SK效应。在300微摩尔浓度下,甲基那可丁在三种神经元类型中引起的兴奋性变化与最大浓度的蜂毒明肽(300纳摩尔)相同。与蜂毒明肽相比,甲基劳丹碱和甲基那可丁对SK通道产生快速可逆的阻断。蜂毒明肽(0.45纳摩尔)和甲基劳丹碱(1.8微摩尔)在SK3细胞中的IC50差异主要源于它们k(-1)的显著差异(蜂毒明肽为0.028秒(-1),甲基劳丹碱≥20秒(-1))。这些实验表明,甲基劳丹碱和甲基那可丁都是中等效力、快速解离的SK通道阻滞剂,对三种SK亚型的效力相似。甲基那可丁在SK通道特异性方面可能更具优势。

相似文献

4
Synthesis and biological evaluation of N-methyl-laudanosine iodide analogues as potential SK channel blockers.
Bioorg Med Chem. 2005 Feb 15;13(4):1201-9. doi: 10.1016/j.bmc.2004.11.025.
5
Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.
Naunyn Schmiedebergs Arch Pharmacol. 2002 Nov;366(5):470-7. doi: 10.1007/s00210-002-0622-2. Epub 2002 Sep 6.
6
Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones.
J Physiol. 2000 Sep 1;527 Pt 2(Pt 2):283-90. doi: 10.1111/j.1469-7793.2000.t01-1-00283.x.
7
SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones.
J Physiol. 2001 Sep 1;535(Pt 2):323-34. doi: 10.1111/j.1469-7793.2001.00323.x.
9
The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines.
Eur J Pharmacol. 2010 Sep 1;641(1):23-8. doi: 10.1016/j.ejphar.2010.05.008. Epub 2010 May 26.

引用本文的文献

1
A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity.
PLoS One. 2024 Sep 4;19(9):e0308809. doi: 10.1371/journal.pone.0308809. eCollection 2024.
2
Comprehensive analysis of endoplasmic reticulum stress-associated genes signature of ulcerative colitis.
Front Immunol. 2023 May 23;14:1158648. doi: 10.3389/fimmu.2023.1158648. eCollection 2023.
3
Spike firing attenuation of serotonin neurons in learned helplessness rats is reversed by ketamine.
Brain Commun. 2021 Dec 1;3(4):fcab285. doi: 10.1093/braincomms/fcab285. eCollection 2021.
4
Calcium-Activated K Channels (K) and Therapeutic Implications.
Handb Exp Pharmacol. 2021;267:379-416. doi: 10.1007/164_2021_459.
7
Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.
J Cardiovasc Pharmacol. 2015 Nov;66(5):441-8. doi: 10.1097/FJC.0000000000000249.
8
M-type channels selectively control bursting in rat dopaminergic neurons.
Eur J Neurosci. 2010 Mar;31(5):827-35. doi: 10.1111/j.1460-9568.2010.07107.x.
9
Intrinsic membrane properties of locus coeruleus neurons in Mecp2-null mice.
Am J Physiol Cell Physiol. 2010 Mar;298(3):C635-46. doi: 10.1152/ajpcell.00442.2009. Epub 2009 Dec 30.

本文引用的文献

1
Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations.
Toxicon. 2004 Jun 15;43(8):933-49. doi: 10.1016/j.toxicon.2003.12.009.
4
Small conductance Ca2+-activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells.
J Physiol. 2003 Nov 15;553(Pt 1):13-9. doi: 10.1113/jphysiol.2003.054551. Epub 2003 Oct 10.
5
Charybdotoxin binding in the I(Ks) pore demonstrates two MinK subunits in each channel complex.
Neuron. 2003 Sep 25;40(1):15-23. doi: 10.1016/s0896-6273(03)00570-1.
7
Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding.
J Neurosci. 2002 Dec 1;22(23):10163-71. doi: 10.1523/JNEUROSCI.22-23-10163.2002.
9
Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.
Naunyn Schmiedebergs Arch Pharmacol. 2002 Nov;366(5):470-7. doi: 10.1007/s00210-002-0622-2. Epub 2002 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验