Suppr超能文献

一种用于研究 CA1 锥体神经元电活动随年龄变化的生物物理最简模型。

A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity.

机构信息

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México.

Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México.

出版信息

PLoS One. 2024 Sep 4;19(9):e0308809. doi: 10.1371/journal.pone.0308809. eCollection 2024.

Abstract

Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.

摘要

衰老仍然是一个尚未被充分理解的生理过程,尤其是在对大脑的影响方面。关于衰老有许多开放性问题,难以通过实验方法来解答。其中的挑战包括难以在体内以亚毫秒分辨率同时记录单个细胞和网络活动,以及由遗传、药理学或行为操作引发的大脑补偿机制。数学模型可以通过允许我们固定无法通过实验控制的参数并在不同条件下研究神经活动来帮助解决其中的一些问题。我们提出了一种基于从热力学原理推导出的跨膜离子传输的一般表达式的 CA1 锥体神经元(PC)的生物物理最小模型。该模型允许通过改变其数量直接改变离子通道的贡献。通过分析模型的动力学,我们找到了再现 PC 中观察到的电活动变异性的参数范围。此外,增加模型中的 L 型 Ca2+通道表达可以再现与年老动物 PC 中观察到的电活动相似的定性和定量的与年龄相关的变化。我们还对与年龄相关的 PC 爆发活动变化做出了预测,据我们所知,这些预测以前尚未报道过。我们得出的结论是,该模型的生物物理性质、灵活性和计算简单性使其成为研究衰老的实验研究的潜在有力补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/11373847/19c6a261f2af/pone.0308809.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验