Suppr超能文献

相互作用蛋白对中结构域的统计分析。

Statistical analysis of domains in interacting protein pairs.

作者信息

Nye Tom M W, Berzuini Carlo, Gilks Walter R, Babu M Madan, Teichmann Sarah A

机构信息

Medical Research Council Biostatistics Unit, Cambridge, UK.

出版信息

Bioinformatics. 2005 Apr 1;21(7):993-1001. doi: 10.1093/bioinformatics/bti086. Epub 2004 Oct 27.

Abstract

MOTIVATION

Several methods have recently been developed to analyse large-scale sets of physical interactions between proteins in terms of physical contacts between the constituent domains, often with a view to predicting new pairwise interactions. Our aim is to combine genomic interaction data, in which domain-domain contacts are not explicitly reported, with the domain-level structure of individual proteins, in order to learn about the structure of interacting protein pairs. Our approach is driven by the need to assess the evidence for physical contacts between domains in a statistically rigorous way.

RESULTS

We develop a statistical approach that assigns p-values to pairs of domain superfamilies, measuring the strength of evidence within a set of protein interactions that domains from these superfamilies form contacts. A set of p-values is calculated for SCOP superfamily pairs, based on a pooled data set of interactions from yeast. These p-values can be used to predict which domains come into contact in an interacting protein pair. This predictive scheme is tested against protein complexes in the Protein Quaternary Structure (PQS) database, and is used to predict domain-domain contacts within 705 interacting protein pairs taken from our pooled data set.

摘要

动机

最近已开发出几种方法,根据组成结构域之间的物理接触来分析蛋白质之间大规模的物理相互作用集,其目的通常是预测新的成对相互作用。我们的目标是将未明确报告结构域 - 结构域接触的基因组相互作用数据与单个蛋白质的结构域水平结构相结合,以便了解相互作用的蛋白质对的结构。我们的方法是由以统计严谨的方式评估结构域之间物理接触证据的需求驱动的。

结果

我们开发了一种统计方法,为结构域超家族对分配p值,测量这些超家族的结构域在一组蛋白质相互作用中形成接触的证据强度。基于来自酵母的相互作用汇总数据集,为SCOP超家族对计算了一组p值。这些p值可用于预测相互作用的蛋白质对中哪些结构域会发生接触。针对蛋白质四级结构(PQS)数据库中的蛋白质复合物测试了这种预测方案,并用于预测从我们的汇总数据集中获取的705个相互作用蛋白质对中的结构域 - 结构域接触。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验