Suppr超能文献

运用形式概念分析从蛋白质-蛋白质相互作用推断结构域-结构域相互作用。

Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

机构信息

Department of Computer Science, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada.

出版信息

PLoS One. 2014 Feb 19;9(2):e88943. doi: 10.1371/journal.pone.0088943. eCollection 2014.

Abstract

Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

摘要

识别可靠的域-域相互作用将提高我们预测新的蛋白质-蛋白质相互作用、揭示蛋白质复合物中相互作用的能力,从而获得更多关于基因功能和行为的信息。识别可靠的域-域相互作用的挑战之一是域混杂性。混杂域是指可以出现在许多结构域架构中的域,因此存在于许多蛋白质中。对于一种基于观察到的和预期的频率之比来计算域对得分的方法来说,这就成了一个问题,因为蛋白质-蛋白质相互作用网络是稀疏的。因此,许多蛋白质对将是非相互作用的,而具有混杂域的域对将受到惩罚。这种从蛋白质-蛋白质相互作用推断可靠的域-域相互作用的问题中的域混杂性挑战已经得到了认识,并提出了一些解决方法。本文报告了将形式概念分析应用于该问题的情况。结果发现,形式概念之间的关系为罕见域提供了一种自然的方式,使混杂的域对的等级升高,并使高等级的域对富含可靠的域-域相互作用。只有在属性标签没有减少的概念格上,混杂的域对才能搭便车到不那么混杂的域对上,并且存在包含混杂和罕见域的蛋白质会增强这种情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f87/3929762/38a5c09cf5cf/pone.0088943.g001.jpg

相似文献

1
Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.
PLoS One. 2014 Feb 19;9(2):e88943. doi: 10.1371/journal.pone.0088943. eCollection 2014.
2
Inferring protein-protein interactions from multiple protein domain combinations.
Methods Mol Biol. 2009;541:43-59. doi: 10.1007/978-1-59745-243-4_3.
3
Preferential use of protein domain pairs as interaction mediators: order and transitivity.
Bioinformatics. 2010 Oct 15;26(20):2564-70. doi: 10.1093/bioinformatics/btq495. Epub 2010 Aug 27.
4
GAIA: a gram-based interaction analysis tool--an approach for identifying interacting domains in yeast.
BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S60. doi: 10.1186/1471-2105-10-S1-S60.
5
6
Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites.
BMC Bioinformatics. 2014 Nov 30;15(1):393. doi: 10.1186/s12859-014-0393-z.
7
A computational model for predicting protein interactions based on multidomain collaboration.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Jul-Aug;9(4):1081-90. doi: 10.1109/TCBB.2012.55.
9
A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafficking.
J Mol Biol. 2009 Sep 11;392(1):228-41. doi: 10.1016/j.jmb.2009.07.006. Epub 2009 Jul 8.
10
Evolutionary conservation of domain-domain interactions.
Genome Biol. 2006;7(12):R125. doi: 10.1186/gb-2006-7-12-r125.

引用本文的文献

1
PPIDomainMiner: Inferring domain-domain interactions from multiple sources of protein-protein interactions.
PLoS Comput Biol. 2021 Aug 9;17(8):e1008844. doi: 10.1371/journal.pcbi.1008844. eCollection 2021 Aug.

本文引用的文献

1
Flaws in evaluation schemes for pair-input computational predictions.
Nat Methods. 2012 Dec;9(12):1134-6. doi: 10.1038/nmeth.2259.
2
The BioGRID interaction database: 2013 update.
Nucleic Acids Res. 2013 Jan;41(Database issue):D816-23. doi: 10.1093/nar/gks1158. Epub 2012 Nov 30.
3
The Pfam protein families database.
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301. doi: 10.1093/nar/gkr1065. Epub 2011 Nov 29.
4
DOMINE: a comprehensive collection of known and predicted domain-domain interactions.
Nucleic Acids Res. 2011 Jan;39(Database issue):D730-5. doi: 10.1093/nar/gkq1229. Epub 2010 Nov 27.
5
Preferential use of protein domain pairs as interaction mediators: order and transitivity.
Bioinformatics. 2010 Oct 15;26(20):2564-70. doi: 10.1093/bioinformatics/btq495. Epub 2010 Aug 27.
6
Interrogating domain-domain interactions with parsimony based approaches.
BMC Bioinformatics. 2008 Mar 26;9:171. doi: 10.1186/1471-2105-9-171.
7
Evolution of protein domain promiscuity in eukaryotes.
Genome Res. 2008 Mar;18(3):449-61. doi: 10.1101/gr.6943508. Epub 2008 Jan 29.
8
Reuse of structural domain-domain interactions in protein networks.
BMC Bioinformatics. 2007 Jul 18;8:259. doi: 10.1186/1471-2105-8-259.
9
Evolutionary conservation of domain-domain interactions.
Genome Biol. 2006;7(12):R125. doi: 10.1186/gb-2006-7-12-r125.
10
Predicting domain-domain interactions using a parsimony approach.
Genome Biol. 2006;7(11):R104. doi: 10.1186/gb-2006-7-11-r104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验