Espadaler Jordi, Romero-Isart Oriol, Jackson Richard M, Oliva Baldo
Grup de Bioinformàtica Estructural (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Catalonia, Spain.
Bioinformatics. 2005 Aug 15;21(16):3360-8. doi: 10.1093/bioinformatics/bti522. Epub 2005 Jun 16.
Given that association and dissociation of protein molecules is crucial in most biological processes several in silico methods have been recently developed to predict protein-protein interactions. Structural evidence has shown that usually interacting pairs of close homologs (interologs) physically interact in the same way. Moreover, conservation of an interaction depends on the conservation of the interface between interacting partners. In this article we make use of both, structural similarities among domains of known interacting proteins found in the Database of Interacting Proteins (DIP) and conservation of pairs of sequence patches involved in protein-protein interfaces to predict putative protein interaction pairs.
We have obtained a large amount of putative protein-protein interaction (approximately 130,000). The list is independent from other techniques both experimental and theoretical. We separated the list of predictions into three sets according to their relationship with known interacting proteins found in DIP. For each set, only a small fraction of the predicted protein pairs could be independently validated by cross checking with the Human Protein Reference Database (HPRD). The fraction of validated protein pairs was always larger than that expected by using random protein pairs. Furthermore, a correlation map of interacting protein pairs was calculated with respect to molecular function, as defined in the Gene Ontology database. It shows good consistency of the predicted interactions with data in the HPRD database. The intersection between the lists of interactions of other methods and ours produces a network of potentially high-confidence interactions.
鉴于蛋白质分子的缔合和解离在大多数生物过程中至关重要,最近已开发出几种计算机方法来预测蛋白质-蛋白质相互作用。结构证据表明,通常相互作用的近缘同源物对(相互作用同源物)以相同方式进行物理相互作用。此外,相互作用的保守性取决于相互作用伙伴之间界面的保守性。在本文中,我们利用在相互作用蛋白质数据库(DIP)中发现的已知相互作用蛋白质结构域之间的结构相似性以及蛋白质-蛋白质界面中涉及的序列片段对的保守性,来预测推定的蛋白质相互作用对。
我们获得了大量推定的蛋白质-蛋白质相互作用(约130,000个)。该列表独立于其他实验和理论技术。我们根据预测与DIP中发现的已知相互作用蛋白质的关系,将预测列表分为三组。对于每组,通过与人类蛋白质参考数据库(HPRD)交叉核对,只有一小部分预测的蛋白质对可以得到独立验证。经过验证的蛋白质对的比例总是大于使用随机蛋白质对预期的比例。此外,针对基因本体数据库中定义的分子功能,计算了相互作用蛋白质对的关联图。它显示了预测的相互作用与HPRD数据库中的数据具有良好的一致性。其他方法与我们的相互作用列表之间的交集产生了一个潜在的高可信度相互作用网络。