Ogasawara Haruhiko
Otaru University of Commerce, Midori, Otaru 047-8501, Japan.
Br J Math Stat Psychol. 2004 Nov;57(Pt 2):353-76. doi: 10.1111/j.2044-8317.2004.tb00143.x.
Asymptotic biases of the parameter estimates in principal component analysis with substantial misspecification are derived. The solutions for unstandardized and standardized observed variables are considered with and without orthogonal and oblique rotations. The distribution of observed variables can be non-normal as long as the finite fourth-order moments of the observed variables exist. When multivariate normality holds for the observed variables, substantial reduction of the amount of computation can be achieved. Numerical examples with simulations are given, with some discussion on the tendency of the biases to reduce the absolute values of parameter estimates.
推导了在存在严重误设情况下主成分分析中参数估计的渐近偏差。考虑了有无正交和斜交旋转时未标准化和标准化观测变量的解决方案。只要观测变量的有限四阶矩存在,观测变量的分布可以是非正态的。当观测变量服从多元正态分布时,可以显著减少计算量。给出了带有模拟的数值例子,并对偏差降低参数估计绝对值的趋势进行了一些讨论。