Hau Kit-Tai, Marsh Herbert W
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
Br J Math Stat Psychol. 2004 Nov;57(Pt 2):327-51. doi: 10.1111/j.2044-8317.2004.tb00142.x.
Maximum likelihood estimation in confirmatory factor analysis requires large sample sizes, normally distributed item responses, and reliable indicators of each latent construct, but these ideals are rarely met. We examine alternative strategies for dealing with non-normal data, particularly when the sample size is small. In two simulation studies, we systematically varied: the degree of non-normality; the sample size from 50 to 1000; the way of indicator formation, comparing items versus parcels; the parcelling strategy, evaluating uniformly positively skews and kurtosis parcels versus those with counterbalancing skews and kurtosis; and the estimation procedure, contrasting maximum likelihood and asymptotically distribution-free methods. We evaluated the convergence behaviour of solutions, as well as the systematic bias and variability of parameter estimates, and goodness of fit.
验证性因素分析中的最大似然估计需要大样本量、呈正态分布的项目反应以及每个潜在结构的可靠指标,但这些理想条件很少能得到满足。我们研究了处理非正态数据的替代策略,尤其是在样本量较小的情况下。在两项模拟研究中,我们系统地改变了以下因素:非正态程度;样本量从50到1000;指标形成方式,比较项目与分量表;分量表策略,评估均匀正偏态和峰度的分量表与具有平衡偏态和峰度的分量表;以及估计程序,对比最大似然法和渐近分布自由法。我们评估了解的收敛行为,以及参数估计的系统偏差和变异性,还有拟合优度。