Suppr超能文献

估计主成分载荷的置信区间:自举法与渐近结果的比较。

Estimating confidence intervals for principal component loadings: a comparison between the bootstrap and asymptotic results.

作者信息

Timmerman Marieke E, Kiers Henk A L, Smilde Age K

机构信息

Heymans Institute for Psychology, University of Groningen, The Netherlands.

出版信息

Br J Math Stat Psychol. 2007 Nov;60(Pt 2):295-314. doi: 10.1348/000711006X109636.

Abstract

Confidence intervals (CIs) in principal component analysis (PCA) can be based on asymptotic standard errors and on the bootstrap methodology. The present paper offers an overview of possible strategies for bootstrapping in PCA. A motivating example shows that CI estimates for the component loadings using different methods may diverge. We explain that this results from both differences in quality and in perspective on the rotational freedom of the population loadings. A comparative simulation study examines the quality of various estimated component loading CIs. The bootstrap approach is more flexible and generally yields better CIs than the asymptotic approach. However, in the case of a clear simple structure of varimax rotated loadings, one can be confident that the asymptotic estimates are reasonable as well.

摘要

主成分分析(PCA)中的置信区间(CI)可以基于渐近标准误差和自助法。本文概述了PCA中自助法的可能策略。一个启发性的例子表明,使用不同方法对成分载荷的CI估计可能会有差异。我们解释说,这是由于总体载荷旋转自由度的质量差异和视角差异所致。一项比较模拟研究检验了各种估计的成分载荷CI的质量。自助法比渐近法更灵活,通常能产生更好的CI。然而,在方差最大化旋转载荷具有清晰简单结构的情况下,也可以相信渐近估计也是合理的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验