Timmerman Marieke E, Kiers Henk A L, Smilde Age K
Heymans Institute for Psychology, University of Groningen, The Netherlands.
Br J Math Stat Psychol. 2007 Nov;60(Pt 2):295-314. doi: 10.1348/000711006X109636.
Confidence intervals (CIs) in principal component analysis (PCA) can be based on asymptotic standard errors and on the bootstrap methodology. The present paper offers an overview of possible strategies for bootstrapping in PCA. A motivating example shows that CI estimates for the component loadings using different methods may diverge. We explain that this results from both differences in quality and in perspective on the rotational freedom of the population loadings. A comparative simulation study examines the quality of various estimated component loading CIs. The bootstrap approach is more flexible and generally yields better CIs than the asymptotic approach. However, in the case of a clear simple structure of varimax rotated loadings, one can be confident that the asymptotic estimates are reasonable as well.
主成分分析(PCA)中的置信区间(CI)可以基于渐近标准误差和自助法。本文概述了PCA中自助法的可能策略。一个启发性的例子表明,使用不同方法对成分载荷的CI估计可能会有差异。我们解释说,这是由于总体载荷旋转自由度的质量差异和视角差异所致。一项比较模拟研究检验了各种估计的成分载荷CI的质量。自助法比渐近法更灵活,通常能产生更好的CI。然而,在方差最大化旋转载荷具有清晰简单结构的情况下,也可以相信渐近估计也是合理的。