Suppr超能文献

使用ID3算法对甲状腺功能状态进行归纳学习。不良示例对学习结果的影响。

Inductive learning of thyroid functional states using the ID3 algorithm. The effect of poor examples on the learning result.

作者信息

Forsström J

机构信息

Department of Clinical Chemistry, University of Turku, Finland.

出版信息

Int J Biomed Comput. 1992 Jan;30(1):57-67. doi: 10.1016/0020-7101(92)90062-w.

Abstract

The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.

摘要

使用针对疑似甲状腺疾病患者的预分类材料对用于归纳学习的ID3算法进行了测试。分类遵循基于规则的专家系统来诊断甲状腺功能。因此,要学习的知识仅限于该专家系统知识库中存在的规则。使用未选择的学习材料(存在一些固有缺失数据)和选择的学习材料(无缺失数据)对ID3算法的学习能力进行了测试。选择的学习材料是未选择学习材料的一个子组。当学习案例数量增加时,程序的准确性提高。当学习材料足够大时,增加学习材料不会进一步改善结果。与未选择的学习材料相比,使用不包括缺失数据的选择学习材料可获得更好的学习结果。通过这种材料,我们证明了ID3算法的一个弱点:如果我们在数据中添加不良示例,它无法从良好示例案例中找到可用信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验