Gerbeaux Patrick, Gainnier Marc, Arnal Jean-Michel, Papazian Laurent, Jean Philippe, Sainty Jean-Marie
Emergency Department, Hôpital Conception, 147 Bd Baille, Marseille Cedex 5 13385, France.
J Biomech. 2005 Jan;38(1):33-7. doi: 10.1016/j.jbiomech.2004.03.019.
To determine flow pattern and critical Reynolds numbers in endotracheal tubes submitted to different helium-oxygen mixtures under laboratory conditions.
Flow-pressure relationships were performed for seven endotracheal tubes (rectilinear position, entry length applied) with distal end open to atmosphere (predicted internal diameters: 6-9 mm). Nine helium-oxygen mixtures were tested, with FIHe varying from zero to 0.78 (increment: 10%). Nine flows were tested, with rates varying from 0.25 to 1.60 l s(-1) (increment: 0.15 l s(-1)). Gas flow resistance was calculated, and for each endotracheal tube, a Moody diagram was realised. Flow regime and critical Reynolds numbers were then determined (fully established laminar, nonestablished laminar, smooth turbulent, or rough).
Even low concentration of helium in inspiratory mixture reduces endotracheal tubes resistance. Effect is maximal for high flows, small tube and high FIHe. Critical Reynolds numbers are inversely correlated to tube diameter.
Under laboratory conditions, flow pattern in endotracheal tubes varies from fully established laminar to rough. Knowledge of the critical Reynolds numbers allows correct application of fluid mechanic formula when studying tube or gaseous mixture effects on respiratory mechanisms.
在实验室条件下,确定气管内导管在不同氦氧混合气体中的流型和临界雷诺数。
对七根气管内导管(呈直线状放置,应用入口长度)进行了流压关系测试,导管远端开口于大气(预计内径为6 - 9毫米)。测试了九种氦氧混合气体,氦气吸入分数(FIHe)从零变化到0.78(增量为10%)。测试了九种流量,速率从0.25变化到1.60升/秒(增量为0.15升/秒)。计算了气体流动阻力,并为每根气管内导管绘制了穆迪图。然后确定了流态和临界雷诺数(完全发展的层流、未发展的层流、光滑湍流或粗糙湍流)。
即使吸气混合气体中氦气浓度较低也会降低气管内导管的阻力。对于高流量、小导管和高FIHe,这种影响最大。临界雷诺数与导管直径呈负相关。
在实验室条件下,气管内导管的流型从完全发展的层流到粗糙湍流不等。了解临界雷诺数有助于在研究导管或气体混合物对呼吸机制的影响时正确应用流体力学公式。