Rybak I A, Shevtsova N A, Paton J F R, Dick T E, St-John W M, Mörschel M, Dutschmann M
School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
Respir Physiol Neurobiol. 2004 Nov 15;143(2-3):307-19. doi: 10.1016/j.resp.2004.03.020.
The generation and shaping of the respiratory motor pattern are performed in the lower brainstem and involve neuronal interactions within the medulla and between the medulla and pons. A computational model of the ponto-medullary respiratory network has been developed by incorporating existing experimental data on the medullary neural circuits and possible interactions between the medulla and pons. The model reproduces a number of experimental findings concerning alterations of the respiratory pattern following various perturbations/stimulations applied to the pons and pulmonary afferents. The results of modeling support the concept that eupneic respiratory rhythm generation requires contribution of the pons whereas a gasping-like rhythm (and the rhythm observed in vitro) may be generated within the medulla and involve pacemaker-driven mechanisms localized within the medullary pre-Botzinger Complex. The model and experimental data described support the concept that during eupnea the respiration-related pontine structures control the medullary network mechanisms for respiratory phase transitions, suppress the intrinsic pacemaker-driven oscillations in the pre-BotC and provide inspiration-inhibitory and expiration-facilitatory reflexes which are independent of the pulmonary Hering-Breuer reflex but operate through the same medullary phase switching circuits.
呼吸运动模式的产生和形成在脑桥下部进行,涉及延髓内以及延髓与脑桥之间的神经元相互作用。通过整合关于延髓神经回路以及延髓与脑桥之间可能的相互作用的现有实验数据,已经开发出一种脑桥 - 延髓呼吸网络的计算模型。该模型再现了一些关于在对脑桥和肺传入神经施加各种扰动/刺激后呼吸模式改变的实验结果。建模结果支持这样一种概念,即平静呼吸节律的产生需要脑桥的参与,而类似喘息的节律(以及在体外观察到的节律)可能在延髓内产生,并且涉及位于延髓前包钦格复合体中的起搏器驱动机制。所描述的模型和实验数据支持这样一种概念,即在平静呼吸期间,与呼吸相关的脑桥结构控制呼吸相转换的延髓网络机制,抑制前包钦格复合体中内在起搏器驱动的振荡,并提供独立于肺黑林 - 布雷尔反射但通过相同延髓相转换电路起作用的吸气抑制和呼气促进反射。