Suppr超能文献

在真实田间条件下使用卷积神经网络进行李树病害检测。

Disease Detection in Plum Using Convolutional Neural Network under True Field Conditions.

机构信息

Department of Computer Science, Islamia College, Peshawar 25000, Pakistan.

Department of Computer Science, FATA University, Kohat 26100, Pakistan.

出版信息

Sensors (Basel). 2020 Sep 28;20(19):5569. doi: 10.3390/s20195569.

Abstract

The agriculture sector faces crop losses every year due to diseases around the globe, which adversely affect food productivity and quality. Detecting and identifying plant diseases at an early stage is still a challenge for farmers, particularly in developing countries. Widespread use of mobile computing devices and the advancements in artificial intelligence have created opportunities for developing technologies to assist farmers in plant disease detection and treatment. To this end, deep learning has been widely used for disease detection in plants with highly favorable outcomes. In this paper, we propose an efficient convolutional neural network-based disease detection framework in plum under true field conditions for resource-constrained devices. As opposed to the publicly available datasets, images used in this study were collected in the field by considering important parameters of image-capturing devices such as angle, scale, orientation, and environmental conditions. Furthermore, extensive data augmentation was used to expand the dataset and make it more challenging to enable robust training. Investigations of recent architectures revealed that transfer learning of scale-sensitive models like Inception yield results much better with such challenging datasets with extensive data augmentation. Through parameter quantization, we optimized the Inception-v3 model for deployment on resource-constrained devices. The optimized model successfully classified healthy and diseased fruits and leaves with more than 92% accuracy on mobile devices.

摘要

由于全球各地的疾病,农业每年都面临作物损失,这对粮食生产力和质量产生不利影响。早期发现和识别植物病害对农民来说仍然是一个挑战,特别是在发展中国家。移动计算设备的广泛使用和人工智能的进步为开发技术提供了机会,以帮助农民进行植物病害检测和治疗。为此,深度学习已被广泛用于具有非常有利结果的植物病害检测。在本文中,我们提出了一种在真实田间条件下基于有效的卷积神经网络的李子病害检测框架,用于资源受限的设备。与现有的公开数据集不同,本研究中使用的图像是在田间采集的,考虑了图像捕捉设备的重要参数,如角度、比例、方向和环境条件。此外,还进行了广泛的数据扩充,以扩展数据集并使其更具挑战性,从而实现稳健的训练。对最近的架构进行的研究表明,对于具有广泛数据扩充的具有挑战性的数据集,像 Inception 这样的尺度敏感模型的迁移学习可以产生更好的结果。通过参数量化,我们对 Inception-v3 模型进行了优化,以便在资源受限的设备上部署。优化后的模型在移动设备上成功地对健康和患病的果实和叶片进行了分类,准确率超过 92%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/321f/7583767/cafc5b9d5fe6/sensors-20-05569-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验