Yasutake Yoshiaki, Yao Min, Sakai Naoki, Kirita Tomomi, Tanaka Isao
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
J Mol Biol. 2004 Nov 19;344(2):325-33. doi: 10.1016/j.jmb.2004.09.035.
Recent studies have implied that the isopropylmalate isomerase small subunit of the hyperthermophilic archaea Pyrococcus horikoshii (PhIPMI-s) functions as isopropylmalate isomerase in the leucine biosynthesis pathway, and as homoaconitase (HACN) in the lysine biosynthesis pathway via alpha-aminoadipic acid. PhIPMI is thus considered a key to understanding the fundamental metabolism of the earliest organisms. We describe for the first time the crystal structure of PhIPMI-s, which displays dual substrate specificity. The crystal structure unexpectedly shows that four molecules create an interlocked assembly with intermolecular disulfide linkages having a skewed 222 point-group symmetry. Although the overall fold of the PhIPMI-s monomer is related closely to domain 4 of the aconitase (ACN), one alpha-helix in the ACN structure is replaced by a short loop with relatively high temperature factor values. Because this region is essential for discriminating the structurally similar substrate based on interactions with its diversified gamma-moiety, the loop structure in the PhIPMI-s must be dependent on the presence of a substrate. The flexibility of the loop region might be a structural basis for recognizing both hydrophobic and hydrophilic gamma-moieties of two distinct substrates, isopropylmalate and homocitrate.
最近的研究表明,嗜热古菌火球菌(Pyrococcus horikoshii, Ph)中的异丙基苹果酸异构酶小亚基(PhIPMI-s)在亮氨酸生物合成途径中作为异丙基苹果酸异构酶发挥作用,并在赖氨酸生物合成途径中通过α-氨基己二酸作为高乌头酸酶(HACN)发挥作用。因此,PhIPMI被认为是理解最早生物基本代谢的关键。我们首次描述了具有双重底物特异性的PhIPMI-s的晶体结构。晶体结构意外地显示,四个分子通过具有倾斜222点群对称性的分子间二硫键形成互锁组装体。尽管PhIPMI-s单体的整体折叠与乌头酸酶(ACN)的结构域4密切相关,但ACN结构中的一个α-螺旋被一个具有相对较高温度因子值的短环所取代。由于该区域对于基于与多样化γ-部分的相互作用来区分结构相似的底物至关重要,因此PhIPMI-s中的环结构必须依赖于底物的存在。环区域的灵活性可能是识别两种不同底物异丙基苹果酸和同柠檬酸的疏水和亲水γ-部分的结构基础。