Life Science Group, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinch 30076, Taiwan.
Biochemistry. 2010 Mar 30;49(12):2687-96. doi: 10.1021/bi901766z.
The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of alpha-hydroxy acids to beta-hydroxy acids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of alpha,beta-dicarboxylates with hydrophobic gamma-chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length gamma-carboxylate groups. These enzymes' stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins lead to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between alpha2 and alpha3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These structural and kinetic results will help to engineer new stereospecific hydro-lyase enzymes for chemoenzymatic syntheses.
aconitase 家族的水解酶包括三类蛋白质,它们催化α-羟基酸向β-羟基酸的异构化。除了 aconitase 之外,异柠檬酸裂合酶(IPMI)蛋白专门催化具有疏水性γ-链基团的α,β-二羧酸的异构化,而同型 aconitase(HACN)蛋白催化具有可变链长γ-羧基基团的三羧酸的异构化。这些酶的立体特异性水解酶活性使它们成为从不饱和前体中产生非对映异构体的有吸引力的催化剂。然而,这些蛋白质之间的序列相似性和趋同进化导致了广泛的错误注释和对基因功能的不确定性。为了确定来自 Methanocaldococcus jannaschii 的同源 IPMI 和 HACN 蛋白质的底物特异性决定因素,小亚基 HACN 蛋白(MJ1271)被结晶用于 X 射线衍射。结构模型显示了在 α2 和 α3 之间的柔性环区域中的特征残基,这些残基将 HACN 与 IPMI 和 aconitase 蛋白质区分开来。MJ1271 的定点突变产生了带有野生型 MJ1003 大亚基蛋白重建的环区变体蛋白。形成的杂合体具有降低的活性但更广泛的底物特异性的混杂水解酶。R26K 和 R26V 变体形成相对有效的 IPMI 酶,而 T27A 变体对 IPMI 和 HACN 底物的特异性常数均较低。R26V T27Y 变体在其柔性环序列上类似于 MJ1277 IPMI 小亚基,但表现出 R26V 变体的广泛底物特异性。这些突变可能使 HACN 活性的进化从祖先的 IPMI 基因逆转,展示了水解酶的混杂性的进化潜力。了解这些特异性决定因素使我们能够对众多基因组序列中的同源 HACN 和 IPMI 基因进行功能重新注释。这些结构和动力学结果将有助于为化学酶合成工程新的立体特异性水解酶。