Rajesh R, Zaboronski Oleg
Martin Fisher School of Physics, Brandeis University, Mailstop 057, Waltham, Massachusetts 02454-9110, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 2):036111. doi: 10.1103/PhysRevE.70.036111. Epub 2004 Sep 21.
We calculate the survival probability of a diffusing test particle in an environment of diffusing particles that undergo coagulation at rate lambda(c) and annihilation at rate lambda(a) . The test particle is annihilated at rate lambda(') on coming into contact with the other particles. The survival probability decays algebraically with time as t(-theta;) . The exponent theta; in d<2 is calculated using the perturbative renormalization group formalism as an expansion in epsilon=2-d . It is shown to be universal, independent of lambda(') , and to depend only on delta , the ratio of the diffusion constant of test particles to that of the other particles, and on the ratio lambda(a) / lambda(c) . In two dimensions we calculate the logarithmic corrections to the power law decay of the survival probability. Surprisingly, the logarithmic corrections are nonuniversal. The one-loop answer for theta; in one dimension obtained by setting epsilon=1 is compared with existing exact solutions for special values of delta and lambda(a) / lambda(c) . The analytical results for the logarithmic corrections are verified by Monte Carlo simulations.
我们计算了一个扩散测试粒子在扩散粒子环境中的生存概率,这些扩散粒子以速率λ(c)发生凝聚,并以速率λ(a)发生湮灭。测试粒子与其他粒子接触时以速率λ(')被湮灭。生存概率随时间呈代数衰减,即t(-θ)。在d<2时,指数θ使用微扰重整化群形式,作为ε=2 - d的展开来计算。结果表明它是普适的,与λ(')无关,仅取决于δ,即测试粒子的扩散常数与其他粒子的扩散常数之比,以及λ(a)/λ(c)之比。在二维中,我们计算了生存概率幂律衰减的对数修正。令人惊讶的是,对数修正是非普适的。通过设ε=1得到的一维中θ的单圈答案,与δ和λ(a)/λ(c)特殊值的现有精确解进行了比较。对数修正的解析结果通过蒙特卡罗模拟得到了验证。