Suppr超能文献

临界猝灭后标度区域中守恒自旋系统的自相关指数

Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench.

作者信息

Sire Clément

机构信息

Laboratoire de Physique Théorique (UMR 5152 du CNRS), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 4, France.

出版信息

Phys Rev Lett. 2004 Sep 24;93(13):130602. doi: 10.1103/PhysRevLett.93.130602. Epub 2004 Sep 20.

Abstract

We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length L(t) approximately t(1/z), we find that for times t' and t satisfying L(t')<<L(t)<<L(t')(phi) well inside the scaling regime, the spin autocorrelation function behaves like s(t)s(t') approximately L(t')(-(d-2+eta))L(t')/L(t). For the O(n) model in the n-->infinity limit, we show that lambda(')(c)=d+2 and phi=z/2. We give a heuristic argument suggesting that this result is, in fact, valid for any dimension d and spin vector dimension n. We present numerical simulations for the conserved Ising model in d=1 and d=2, which are fully consistent with the present theory.

摘要

我们研究了在临界温度下猝灭后守恒自旋系统的自相关函数。定义关联长度(L(t))近似为(t^{(1/z)}),我们发现,对于处于标度区域内且满足(L(t') << L(t) << L(t')^{\phi})的时间(t')和(t),自旋自相关函数的行为类似于(s(t)s(t') \approx L(t')^{-(d - 2 + \eta)}[L(t')/L(t)]^{\lambda'_c})。对于(n \to \infty)极限下的(O(n))模型,我们表明(\lambda'_c = d + 2)且(\phi = z/2)。我们给出了一个启发式论证,表明该结果实际上对任何维度(d)和自旋矢量维度(n)都是有效的。我们给出了(d = 1)和(d = 2)时守恒伊辛模型的数值模拟结果,这些结果与当前理论完全一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验