Schehr Gregory, Paul Raja
Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 2):016105. doi: 10.1103/PhysRevE.72.016105. Epub 2005 Jul 6.
We investigate, analytically near the dimension d(uc) =4 and numerically in d=3 , the nonequilibrium relaxational dynamics of the randomly diluted Ising model at criticality. Using the exact renormalization-group method to one loop, we compute the two times t, t(w) correlation function and fluctuation dissipation ratio (FDR) for any Fourier mode of the order parameter, of finite wave vector q . In the large time separation limit, the FDR is found to reach a nontrivial value X(infinity) independently of (small) q and coincide with the FDR associated to the total magnetization obtained previously. Explicit calculations in real space show that the FDR associated to the local magnetization converges, in the asymptotic limit, to this same value X(infinity). Through a Monte Carlo simulation, we compute the autocorrelation function in three dimensions, for different values of the dilution fraction p at T(c) (p) . Taking properly into account the corrections to scaling, we find, according to the renormalization-group predictions, that the autocorrelation exponent lambda(c) is independent of p . The analysis is complemented by a study of the nonequilibrium critical dynamics following a quench from a completely ordered state.
我们在临界状态下,对随机稀释伊辛模型的非平衡弛豫动力学进行了研究,在维度(d(uc)=4)附近进行解析研究,并在(d = 3)时进行数值研究。使用精确重整化群方法到一圈,我们计算了有限波矢(q)的序参量的任意傅里叶模式的双时(t)、(t(w))关联函数和涨落耗散比(FDR)。在大时间间隔极限下,发现FDR达到一个非平凡值(X(\infty)),与(小)(q)无关,并且与之前得到的总磁化强度相关的FDR一致。实空间中的显式计算表明,与局部磁化强度相关的FDR在渐近极限下收敛到相同的值(X(\infty))。通过蒙特卡罗模拟,我们计算了三维中不同稀释分数(p)在(T(c)(p))时的自关联函数。适当考虑标度修正后,根据重整化群预测,我们发现自关联指数(\lambda(c))与(p)无关。通过对从完全有序状态猝灭后的非平衡临界动力学的研究,对上述分析进行了补充。