海马结构混合神经元网络中的同步。

Synchronization in hybrid neuronal networks of the hippocampal formation.

作者信息

Netoff Theoden I, Banks Matthew I, Dorval Alan D, Acker Corey D, Haas Julie S, Kopell Nancy, White John A

机构信息

Deptartment of Biomedical Engineering, Center for BioDynamics, Boston University, 44 Cummington St., Boston, Massachusetts 02215, USA.

出版信息

J Neurophysiol. 2005 Mar;93(3):1197-208. doi: 10.1152/jn.00982.2004. Epub 2004 Nov 3.

Abstract

Understanding the mechanistic bases of neuronal synchronization is a current challenge in quantitative neuroscience. We studied this problem in two putative cellular pacemakers of the mammalian hippocampal theta rhythm: glutamatergic stellate cells (SCs) of the medial entorhinal cortex and GABAergic oriens-lacunosum-molecular (O-LM) interneurons of hippocampal region CA1. We used two experimental methods. First, we measured changes in spike timing induced by artificial synaptic inputs applied to individual neurons. We then measured responses of free-running hybrid neuronal networks, consisting of biological neurons coupled (via dynamic clamp) to biological or virtual counterparts. Results from the single-cell experiments predicted network behaviors well and are compatible with previous model-based predictions of how specific membrane mechanisms give rise to empirically measured synchronization behavior. Both cell types phase lock stably when connected via homogeneous excitatory-excitatory (E-E) or inhibitory-inhibitory (I-I) connections. Phase-locked firing is consistently synchronous for either cell type with E-E connections and nearly anti-synchronous with I-I connections. With heterogeneous connections (e.g., excitatory-inhibitory, as might be expected if members of a given population had heterogeneous connections involving intermediate interneurons), networks often settled into phase locking that was either stable or unstable, depending on the order of firing of the two cells in the hybrid network. Our results imply that excitatory SCs, but not inhibitory O-LM interneurons, are capable of synchronizing in phase via monosynaptic mutual connections of the biologically appropriate polarity. Results are largely independent of synaptic strength and synaptic kinetics, implying that our conclusions are robust and largely unaffected by synaptic plasticity.

摘要

理解神经元同步的机制基础是当前定量神经科学面临的一项挑战。我们在哺乳动物海马体θ节律的两个假定细胞起搏器中研究了这个问题:内侧内嗅皮层的谷氨酸能星状细胞(SCs)和海马体CA1区的GABA能的梭形-腔隙-分子层(O-LM)中间神经元。我们使用了两种实验方法。首先,我们测量了施加于单个神经元的人工突触输入所诱导的放电时间变化。然后,我们测量了自由运行的混合神经元网络的反应,该网络由(通过动态钳制)与生物对应物或虚拟对应物耦合的生物神经元组成。单细胞实验的结果很好地预测了网络行为,并且与先前基于模型的关于特定膜机制如何产生经验测量的同步行为的预测相一致。当通过均匀的兴奋性-兴奋性(E-E)或抑制性-抑制性(I-I)连接时,两种细胞类型都能稳定地锁相。对于具有E-E连接的任何一种细胞类型,锁相放电始终是同步的,而对于具有I-I连接的细胞类型则几乎是反同步的。对于异质连接(例如,如果给定群体的成员具有涉及中间神经元的异质连接,可能会出现兴奋性-抑制性连接),网络通常会进入稳定或不稳定的锁相状态,并取决于混合网络中两个细胞的放电顺序。我们的结果表明,兴奋性SCs能够通过具有生物学适当极性的单突触相互连接进行同相同步,而抑制性O-LM中间神经元则不能。结果在很大程度上与突触强度和突触动力学无关,这意味着我们的结论是可靠的,并且在很大程度上不受突触可塑性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索