Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center , New Orleans, Louisiana.
J Neurophysiol. 2019 Apr 1;121(4):1125-1142. doi: 10.1152/jn.00728.2018. Epub 2019 Feb 6.
We show how to predict whether a neural network will exhibit global synchrony (a one-cluster state) or a two-cluster state based on the assumption of pulsatile coupling and critically dependent upon the phase response curve (PRC) generated by the appropriate perturbation from a partner cluster. Our results hold for a monotonically increasing (meaning longer delays as the phase increases) PRC, which likely characterizes inhibitory fast-spiking basket and cortical low-threshold-spiking interneurons in response to strong inhibition. Conduction delays stabilize synchrony for this PRC shape, whereas they destroy two-cluster states, the former by avoiding a destabilizing discontinuity and the latter by approaching it. With conduction delays, stronger coupling strength can promote a one-cluster state, so the weak coupling limit is not applicable here. We show how jitter can destabilize global synchrony but not a two-cluster state. Local stability of global synchrony in an all-to-all network does not guarantee that global synchrony can be observed in an appropriately scaled sparsely connected network; the basin of attraction can be inferred from the PRC and must be sufficiently large. Two-cluster synchrony is not obviously different from one-cluster synchrony in the presence of noise and may be the actual substrate for oscillations observed in the local field potential (LFP) and the electroencephalogram (EEG) in situations where global synchrony is not possible. Transitions between cluster states may change the frequency of the rhythms observed in the LFP or EEG. Transitions between cluster states within an inhibitory subnetwork may allow more effective recruitment of pyramidal neurons into the network rhythm. NEW & NOTEWORTHY We show that jitter induced by sparse connectivity can destabilize global synchrony but not a two-cluster state with two smaller clusters firing alternately. On the other hand, conduction delays stabilize synchrony and destroy two-cluster states. These results hold if each cluster exhibits a phase response curve similar to one that characterizes fast-spiking basket and cortical low-threshold-spiking cells for strong inhibition. Either a two-cluster or a one-cluster state might provide the oscillatory substrate for neural computations.
我们展示了如何基于脉动耦合的假设,并严重依赖由伙伴簇引起的适当扰动产生的相位响应曲线 (PRC),来预测神经网络是否会表现出全局同步(一个簇状态)或两个簇状态。我们的结果适用于单调递增的 PRC(随着相位增加,延迟时间更长),这可能描述了强抑制下的抑制性快速放电篮和皮质低阈值放电中间神经元的特征。对于这种 PRC 形状,传导延迟会稳定同步,而它们会破坏两个簇状态,前者通过避免不稳定的不连续,后者通过接近它。随着传导延迟,更强的耦合强度可以促进一个簇状态,因此弱耦合极限在这里不适用。我们展示了抖动如何破坏全局同步但不破坏两个簇状态。全连接网络中全局同步的局部稳定性并不能保证在适当缩放的稀疏连接网络中可以观察到全局同步;吸引域可以从 PRC 推断出来,并且必须足够大。在存在噪声的情况下,两个簇同步与一个簇同步没有明显区别,并且可能是在不可能实现全局同步的情况下在局部场电位 (LFP) 和脑电图 (EEG) 中观察到的振荡的实际基础。簇状态之间的转变可能会改变 LFP 或 EEG 中观察到的节律的频率。抑制性子网内的簇状态之间的转变可能允许更多的锥体神经元有效地招募到网络节律中。新的和值得注意的是,我们表明,稀疏连接引起的抖动可以破坏全局同步,但不能破坏两个较小的簇交替发射的两个簇状态。另一方面,传导延迟会稳定同步并破坏两个簇状态。如果每个簇都表现出类似于快速放电篮和皮质低阈值放电细胞的强抑制的相位响应曲线,则这些结果成立。两个簇或一个簇状态都可能为神经计算提供振荡基础。