Suppr超能文献

在θ振荡期间,GABA 能神经元活动的门控、定时和相位超前对海马神经元活动的贡献。

GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

机构信息

Division of Engineering, King's College London, Strand, London, United Kingdom.

出版信息

Hippocampus. 2012 Jul;22(7):1597-621. doi: 10.1002/hipo.21002. Epub 2012 Jan 18.

Abstract

Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum.

摘要

成功的空间探索需要以正确的顺序对空间记忆进行门控、存储和检索。已知海马体在时空组织空间信息方面发挥着重要作用。通过海马体锥体神经元和抑制性中间神经元的放电率和相位,以及海马体内外区域的网络θ振荡进行有序编码和检索。关于海马体微电路中各种细胞类型的解剖学、生理学和分子特征以及连接和突触特性已经了解了很多,但这些单个神经元的详细特性如何导致空间记忆的时间组织仍不清楚。我们提出了一个基于观察到的海马体 CA1 微电路中锥体细胞和六种类型抑制性中间神经元的生物物理特性的模型:轴突-轴突、篮状、双分层、神经胶质、常春藤和腔隙-分子层中间神经元。该模型模拟了在直线轨道上奔跑的虚拟大鼠。兴奋性瞬态输入来自内嗅皮层 (EC) 和 CA3 沙斐尔侧支,同时作用于锥体细胞和抑制性中间神经元,而来自中隔的抑制性输入仅作用于抑制性中间神经元。多巴胺作为门控器,以频率依赖的方式调节到 PC 远端树突的空间记忆流。使用由三个钙探测器组成的用于模型化可塑性效应的尖峰时间依赖性可塑性机制,其响应树突中的瞬时钙水平及其时间过程。该模型模拟了不同海马体细胞类型相对于θ振荡的放电时间,并提出了海马体和隔区抑制性中间神经元的不同类别的功能作用,以正确排序空间记忆以及 CA1 中锥体细胞(位置细胞)的θ相超前的产生和维持。该模型提出了一些可进行实验验证的预测,这些预测可能有助于更好地理解海马体和隔区的生物物理计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验