Pernpointner M
Theoretical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
J Chem Phys. 2004 Nov 8;121(18):8782-91. doi: 10.1063/1.1802792.
In this paper we present the third-order extension of the four-component one-particle propagator method in the non-Dyson version of the algebraic diagrammatic construction (ADC) for the calculation of valence ionization energies. Relativistic and electron correlation effects are incorporated consistently by starting from the Dirac-Hamiltonian. The ADC equations derived from the Feynman diagrams can hereby be used in their spin-orbital form and need not be transformed to the spin-free version as required for a nonrelativistic treatment. For the calculation of the constant self-energy contribution the Dyson expansion method was implemented being superior to a perturbational treatment of sigma(infinity). The Dirac-Hartree-Fock- (DHF-) ADC(3) was applied to the calculation of valence photoionization spectra of the noble gas atoms, carbon monoxide and ICN now also reproducing spin-orbit features in the spectrum. Comparison with DHF-ADC(2), nonrelativistic ADC(3), and experimental data was made in order to demonstrate the characteristics and performance of the method.
在本文中,我们展示了用于计算价层电离能的代数图解构建(ADC)非戴森版本中四分量单粒子传播子方法的三阶扩展。通过从狄拉克哈密顿量出发,一致地纳入了相对论和电子相关效应。由此,从费曼图导出的ADC方程可以以自旋轨道形式使用,无需像非相对论处理那样转换为无自旋版本。为了计算常数自能贡献,采用了戴森展开方法,该方法优于对σ(∞)的微扰处理。狄拉克 - 哈特里 - 福克(DHF)-ADC(3)被应用于计算稀有气体原子、一氧化碳和ICN的价层光电离光谱,现在该光谱中也再现了自旋 - 轨道特征。为了展示该方法的特点和性能,与DHF-ADC(2)、非相对论ADC(3)以及实验数据进行了比较。