Suppr超能文献

提高用于空间滤波脑磁图数据组分析的置换检验效能

Improving permutation test power for group analysis of spatially filtered MEG data.

作者信息

Chau Wilkin, McIntosh Anthony R, Robinson Stephen E, Schulz Matthias, Pantev Christo

机构信息

The Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1.

出版信息

Neuroimage. 2004 Nov;23(3):983-96. doi: 10.1016/j.neuroimage.2004.07.007.

Abstract

Non-parametric statistical methods, such as permutation, are flexible tools to analyze data when the population distribution is not known. With minimal assumptions and better statistical power compared to the parametric tests, permutation tests have recently been applied to the spatially filtered magnetoencephalography (MEG) data for group analysis. To perform permutation tests on neuroimaging data, an empirical maximal null distribution has to be found, which is free from any activated voxels, to determine the threshold to classify the voxels as active at a given probability level. An iterative procedure is used to determine the distribution by computing the null distribution, which is recomputed when a possible activated voxel is found within the current distributions. Besides the high computational costs associated with this approach, there is no guarantee that all activated voxels are excluded when constructing the maximal null distribution, which may reduce the statistical power. In this study, we propose a novel way to construct the maximal null distribution from the data of the resting period. The approach is tested on the MEG data from a somatosensory experiment, and demonstrated that the approach could improve the power of the permutation test while reducing the computational cost at the same time.

摘要

非参数统计方法,如置换检验,是在总体分布未知时分析数据的灵活工具。与参数检验相比,置换检验假设最少且统计效力更强,最近已被应用于空间滤波后的脑磁图(MEG)数据的组分析。要对神经成像数据进行置换检验,必须找到一个经验性的最大零分布,该分布不包含任何激活的体素,以便确定在给定概率水平下将体素分类为激活的阈值。通过计算零分布来确定该分布,使用迭代过程,当在当前分布中发现可能激活的体素时会重新计算零分布。除了与这种方法相关的高计算成本外,在构建最大零分布时不能保证排除所有激活的体素,这可能会降低统计效力。在本研究中,我们提出了一种从静息期数据构建最大零分布的新方法。该方法在体感实验的MEG数据上进行了测试,并证明该方法可以提高置换检验的效力,同时降低计算成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验