Maris Eric, Oostenveld Robert
NICI, Biological Psychology, Radboud University Nijmegen, Nijmegen, The Netherlands.
J Neurosci Methods. 2007 Aug 15;164(1):177-90. doi: 10.1016/j.jneumeth.2007.03.024. Epub 2007 Apr 10.
In this paper, we show how ElectroEncephaloGraphic (EEG) and MagnetoEncephaloGraphic (MEG) data can be analyzed statistically using nonparametric techniques. Nonparametric statistical tests offer complete freedom to the user with respect to the test statistic by means of which the experimental conditions are compared. This freedom provides a straightforward way to solve the multiple comparisons problem (MCP) and it allows to incorporate biophysically motivated constraints in the test statistic, which may drastically increase the sensitivity of the statistical test. The paper is written for two audiences: (1) empirical neuroscientists looking for the most appropriate data analysis method, and (2) methodologists interested in the theoretical concepts behind nonparametric statistical tests. For the empirical neuroscientist, a large part of the paper is written in a tutorial-like fashion, enabling neuroscientists to construct their own statistical test, maximizing the sensitivity to the expected effect. And for the methodologist, it is explained why the nonparametric test is formally correct. This means that we formulate a null hypothesis (identical probability distribution in the different experimental conditions) and show that the nonparametric test controls the false alarm rate under this null hypothesis.
在本文中,我们展示了如何使用非参数技术对脑电图(EEG)和脑磁图(MEG)数据进行统计分析。非参数统计检验在用于比较实验条件的检验统计量方面为用户提供了完全的自由度。这种自由度提供了一种直接解决多重比较问题(MCP)的方法,并且允许在检验统计量中纳入基于生物物理学的约束条件,这可能会大幅提高统计检验的灵敏度。本文是为两类读者撰写的:(1)寻求最合适数据分析方法的经验丰富的神经科学家,以及(2)对非参数统计检验背后的理论概念感兴趣的方法学家。对于经验丰富的神经科学家,本文大部分内容以教程的形式撰写,使神经科学家能够构建自己的统计检验,最大限度地提高对预期效应的灵敏度。对于方法学家,文中解释了非参数检验为何在形式上是正确的。这意味着我们制定了一个零假设(不同实验条件下的概率分布相同),并表明非参数检验在该零假设下控制了误报率。