Suppr超能文献

神经影像数据的偏最小二乘分析:应用与进展

Partial least squares analysis of neuroimaging data: applications and advances.

作者信息

McIntosh Anthony Randal, Lobaugh Nancy J

机构信息

Rotman Research Institute of Baycrest Centre, University of Toronto, Toronto, Ontario, Canada M6A 2E1.

出版信息

Neuroimage. 2004;23 Suppl 1:S250-63. doi: 10.1016/j.neuroimage.2004.07.020.

Abstract

Partial least squares (PLS) analysis has been used to characterize distributed signals measured by neuroimaging methods like positron emission tomography (PET), functional magnetic resonance imaging (fMRI), event-related potentials (ERP) and magnetoencephalography (MEG). In the application to PET, it has been used to extract activity patterns differentiating cognitive tasks, patterns relating distributed activity to behavior, and to describe large-scale interregional interactions or functional connections. This paper reviews the more recent extension of PLS to the analysis of spatiotemporal patterns present in fMRI, ERP, and MEG data. We present a basic mathematical description of PLS and discuss the statistical assessment using permutation testing and bootstrap resampling. These two resampling methods provide complementary information of the statistical strength of the extracted activity patterns (permutation test) and the reliability of regional contributions to the patterns (bootstrap resampling). Simulated ERP data are used to guide the basic interpretation of spatiotemporal PLS results, and examples from empirical ERP and fMRI data sets are used for further illustration. We conclude with a discussion of some caveats in the use of PLS, including nonlinearities, nonorthogonality, and interpretation difficulties. We further discuss its role as an important tool in a pluralistic analytic approach to neuroimaging.

摘要

偏最小二乘法(PLS)分析已被用于刻画通过神经成像方法测量的分布式信号,如正电子发射断层扫描(PET)、功能磁共振成像(fMRI)、事件相关电位(ERP)和脑磁图(MEG)。在PET的应用中,它已被用于提取区分认知任务的活动模式、将分布式活动与行为相关联的模式,并描述大规模区域间相互作用或功能连接。本文回顾了PLS在分析fMRI、ERP和MEG数据中存在的时空模式方面的最新扩展。我们给出了PLS的基本数学描述,并讨论了使用置换检验和自助重采样的统计评估。这两种重采样方法提供了关于提取的活动模式的统计强度(置换检验)和区域对模式贡献的可靠性(自助重采样)的补充信息。模拟的ERP数据用于指导对时空PLS结果的基本解释,经验ERP和fMRI数据集的例子用于进一步说明。我们最后讨论了使用PLS时的一些注意事项,包括非线性、非正交性和解释困难。我们还进一步讨论了它作为神经成像多元分析方法中一种重要工具的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验