Suppr超能文献

胡萝卜还是大棒:帕金森病中的认知强化学习

By carrot or by stick: cognitive reinforcement learning in parkinsonism.

作者信息

Frank Michael J, Seeberger Lauren C, O'reilly Randall C

机构信息

Department of Psychology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0345, USA.

出版信息

Science. 2004 Dec 10;306(5703):1940-3. doi: 10.1126/science.1102941. Epub 2004 Nov 4.

Abstract

To what extent do we learn from the positive versus negative outcomes of our decisions? The neuromodulator dopamine plays a key role in these reinforcement learning processes. Patients with Parkinson's disease, who have depleted dopamine in the basal ganglia, are impaired in tasks that require learning from trial and error. Here, we show, using two cognitive procedural learning tasks, that Parkinson's patients off medication are better at learning to avoid choices that lead to negative outcomes than they are at learning from positive outcomes. Dopamine medication reverses this bias, making patients more sensitive to positive than negative outcomes. This pattern was predicted by our biologically based computational model of basal ganglia-dopamine interactions in cognition, which has separate pathways for "Go" and "NoGo" responses that are differentially modulated by positive and negative reinforcement.

摘要

我们从决策的积极结果与消极结果中学到了多少?神经调节物质多巴胺在这些强化学习过程中起着关键作用。帕金森病患者的基底神经节中多巴胺耗尽,在需要通过试错学习的任务中表现受损。在这里,我们使用两项认知程序学习任务表明,未服药的帕金森病患者在学习避免导致消极结果的选择方面比从积极结果中学习表现更好。多巴胺药物治疗扭转了这种偏差,使患者对积极结果比消极结果更敏感。这种模式由我们基于生物学的基底神经节 - 多巴胺在认知中相互作用的计算模型预测,该模型具有分别用于“执行”和“不执行”反应的不同通路,这些通路受到正强化和负强化的差异调节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验