Prog Brain Res. 2010;183:275-97. doi: 10.1016/S0079-6123(10)83014-6.
We review the contributions of biologically constrained computational models to our understanding of motor and cognitive deficits in Parkinson's disease (PD). The loss of dopaminergic neurons innervating the striatum in PD, and the well-established role of dopamine (DA) in reinforcement learning (RL), enable neural network models of the basal ganglia (BG) to derive concrete and testable predictions. We focus in this review on one simple underlying principle - the notion that reduced DA increases activity and causes long-term potentiation in the indirect pathway of the BG. We show how this theory can provide a unified account of diverse and seemingly unrelated phenomena in PD including progressive motor degeneration as well as cognitive deficits in RL, decision making and working memory. DA replacement therapy and deep brain stimulation can alleviate some aspects of these impairments, but can actually introduce negative effects such as motor dyskinesias and cognitive impulsivity. We discuss these treatment effects in terms of modulation of specific mechanisms within the computational framework. In addition, we review neurocomputational interpretations of increased impulsivity in the face of response conflict in patients with deep-brain-stimulation.
我们回顾了受生物约束的计算模型对我们理解帕金森病(PD)运动和认知缺陷的贡献。PD 中纹状体多巴胺能神经元的丧失,以及多巴胺(DA)在强化学习(RL)中的明确作用,使基底神经节(BG)的神经网络模型能够得出具体和可测试的预测。在这篇综述中,我们重点关注一个简单的基本原理——即减少 DA 会增加 BG 间接通路的活动并引起长期增强。我们展示了如何用这个理论来统一解释 PD 中各种看似无关的现象,包括运动功能的逐渐退化,以及 RL、决策和工作记忆中的认知缺陷。DA 替代疗法和深部脑刺激可以缓解这些损伤的某些方面,但实际上会引入一些负面影响,如运动障碍和认知冲动。我们根据计算框架内特定机制的调节来讨论这些治疗效果。此外,我们还回顾了面对深度脑刺激患者的反应冲突时,增加冲动性的神经计算解释。