Garner Ethan C, Campbell Christopher S, Mullins R Dyche
University of California, 600 16th Street, San Francisco, CA 94107, USA.
Science. 2004 Nov 5;306(5698):1021-5. doi: 10.1126/science.1101313.
Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of DNA.
动态不稳定性——一种双态聚合物在稳定伸长和快速缩短阶段之间的转换——对于真核生物微管的细胞功能至关重要,尤其是在染色体分离过程中。自20年前发现动态不稳定性以来,尚未发现其他生物聚合物具有这种行为。利用全内反射荧光显微镜和荧光共振能量转移技术,我们观察到原核肌动蛋白同源物ParM,其组装是大型低拷贝数质粒分离所必需的,它既表现出动态不稳定性,又表现出对称的双向聚合。ParM的动态不稳定性受三磷酸腺苷(ATP)水解调节,并且细丝由ATP结合单体的帽稳定。ParM与微管蛋白无关,因此其动态不稳定性必定是由对基于聚合物的DNA分离的一组共同限制所驱动的趋同进化产生的。